

Python-deploy-framework

Framework for remote execution on Posix systems.

	Index

	Module Index

	Search Page

Important key features are:

	Powerful interactive command line with autocompletion;

	Interactive and fast parallel execution;

	Reusability of your code (through inheritance);

	Normally using SSH for remote execution, but pluggable for other execution methods;

	Pluggable logging framework;

	All scripts can be used as a library, easy to call from another Python application. (No global state.)

It’s more powerful than Fabric [http://docs.fabfile.org/], but different from Saltstack [http://saltstack.com]. It’s not
meant to replace anything, it’s another tool for your toolbox.

Questions? Just create a ticket [https://github.com/jonathanslenders/python-deployer/issues?state=open] in Github for now:

	Read the tutorials: Hello world and Deploying an
application

	Find the source code at github [https://github.com/jonathanslenders/python-deployer].

Table of contents

	Tutorial: Hello world
	Install requirements

	Creating nodes

	Linking the node to actual hosts

	Starting an interactive shell

	Remote SSH Hosts

	Complete example

	Where to go now?

	Tutorial: Deploying a (Django) application
	Using python-deployer

	Writing the deployment script
	Git checkout

	Defining the SSH host

	Configuration management

	Managing the virtualenv

	Running Django management commands

	Running gunicorn through supervisord

	Making stuff reusable
	A reusable virtualenv class.

	Reusable git class

	Our reusable DjangoDeployment

	Adding hosts

	And now?

	Architecture of roles and nodes
	Use cases

	Creating nodes

	More complete example

	The interactive shell
	Navigation

	Running node actions

	Special commands

	The SCP (secure copy) shell

	The node object
	Running the code

	Inheritance
	Expansion of double underscores

	The importance of ParallelNode
	Isolation of hosts in ParallelNode.

	.Array and .JustOne

	Using contrib.nodes

	Reference

	Node reference
	Decorators

	Role mapping

	Host
	Base classes

	Localhost

	SSH Host

	host_container
	Reference

	Groups

	The Console object

	Inspection
	Inspector

	Filters for NodeIterator

	Query expressions
	More examples

	Utils
	String utilities

	Other

	Exceptions

	pseudo_terminal

	Internals
	Data flow

	About
	Special thanks to

	Authors

Tutorial: Hello world

In this short tutorial, we’ll demonstrate how to create a simple interactive
shell around one simple deployment command that just prints ‘Hello World’. We
suppose you have already an understanding of the Python language and Python
packages.

Install requirements

Install the following package.

pip install deployer

This will probably also install dependencies like paramiko, twisted and
pexpect, but don’t worry too much about that.

Creating nodes

Now we will create a deployer.node.Node to contains the ‘Hello world’ action.
Such a Node class is the start for any deployment component. Paste the
following in an empty Python file:

from deployer.node import Node

class SayHello(Node):
 def hello(self):
 self.hosts.run('echo hello world')

When SayHello.hello is called in the example above, it will run the echo
command on all the hosts that are known to this Node.

Linking the node to actual hosts

Now we need to define on which hosts this node should run. Let’s use Python
class inheritance for this. Append the following to your Python file:

from deployer.host import LocalHost

class SayHelloOnLocalHost(SayHello):
 class Hosts:
 host = LocalHost

Starting an interactive shell

One way of execting this code, is by wrapping it in an interactive
shell. This is the last thing to do: add the following to
the bottom of your Python file, and save it as my_deployment.py.

if __name__ == '__main__':
 from deployer.client import start
 start(SayHelloOnLocalHost)

Call it like below, and you’ll get a nice interactive shell with tab-completion
from where you can run the hello command.

python deployment.py run

Remote SSH Hosts

So, in the example we have shown how to run ‘Hello world’ on your local
machine. That’s fine, but probably we want to execute this on a remote machine
that’s connected through SSH. That’s possible by creating an SSHHost class
instead of using LocalHost. Make sure to change the credentials to your own.

from deployer.host import SSHHost

class MyRemoteHost(SSHHost):
 slug = 'my-host'
 address = '192.168.0.200'
 username = 'john'
 password = '...'

class RemoteHello(SayHello):
 class Hosts:
 host = MyRemoteHost

Complete example

As a final example, we show how we created two instances of SayHello. One
mapped to your local machine, and one mapped to a remote SSH Host. These two
nodes are now wrapped in a parent node, that groups both.

#!/usr/bin/env python

Imports
from deployer.client import start
from deployer.host import SSHHost, LocalHost
from deployer.node import Node

Host definitions
class MyRemoteHost(SSHHost):
 slug = 'my-host'
 address = '192.168.0.200'
 username = 'john'
 password = '...'

The deployment nodes

class SayHello(Node):
 def hello(self):
 self.hosts.run('echo hello world')

class RootNode(Node):
 class local_hello(SayHello):
 class Hosts:
 host = LocalHost

 class remote_hello(SayHello):
 class Hosts:
 host = MyRemoteHost

if __name__ == '__main__':
 start(RootNode)

Where to go now?

What you learned here is a basic example of how to use the deployment
framework. However, there are much more advanced concepts possible. A quick
listing of items to learn are the following. (In logical order of learning.)

	Read the Django tutorial

	Architecture of role and nodes

	Inheritance (and double underscore expansion)

	Query expressions

	Introspection

Tutorial: Deploying a (Django) application

This is a short tutorial that walks you through the steps required to create a
script that automatically installs a Django application on a server. We use the
Django application only as an example, the tutorial is meant to cover enough
that you can apply it yourself for deployments or management of any kind of
remote applications.

You learn how to write a deploy or remote execution script that can be
(re)used for installation of a new servers, for incremental upgrades or for
manually debugging the server.

	Some assumptions:

	
	You should have SSH credentials of the server on which you’re going to
deploy and you know how to use SSH.

	You should know how to work with a bash shell.

	Not required, but useful:

	
	You have knowledge of Git, and your code is in a Git-repository. (Then we
can use git clone to get our code on the servers.)

	You have some knowledge of gunicorn, nginx and other tools for running wsgi
applications.

Note

It’s important that you understand the tools you’re going to deploy,
and how to cofigure them by hand. In this case, we are configuring gunicorn
and Django as an example, so we would have to know how these things
work. (You can’t write a script to repeat some work for you, if you
have no idea how to do it yourself.) The deployer framework has no
idea what Django or nginx is, it just executes code on servers.

This tutorial is only an example of how you could automatically
deploy a Django application. You can but probably won’t do it exactly
as described here. The purpose of the tutorial is in the first place
to explain some relevant steps, so you have an idea how you could
create a repeatable script of the steps that you would otherwise do
by hand.

	So we are going to write a script that:

	
	gets your code from the repository to the server (git clone);

	Installs the requirements in a virtualenv;

	sets up a local_settings.py configuration file on the server;

	installs and configures Gunicorn.

Using python-deployer

On your local system, you need to install the deployer Python library with
pip or easy_install. (If you are not using a virtualenv [http://www.virtualenv.org/en/latest/], you have
to use sudo to install it system-wide.)

pip install deployer

Now, you can create a new Python file, save it as deploy.py and paste the
following template in there.

#!/usr/bin/env python
from deployer.client import start
from deployer.node import Node

class DjangoDeployment(Node):
 pass

if __name__ == '__main':
 start(DjangoDeployment)

Make it executable:

chmod +x deploy.py

This does nothing yet. In the following sections, we are going to add more code
to the DjangoDeployment Node. If you run the
script, you will already get an interactive shell,
but there’s also nothing much to see yet. Try to run the script as follows:

./deploy.py

You can quit the shell by typing exit.

Writing the deployment script

Git checkout

Lets start by adding code for cloning and checking out a certain revision of
the repository. You can add the install_git, git_clone and
git_checkout methods in the snippet below to the DjangoDeployment node.

from deployer.utils import esc1

class DjangoDeployment(Node):
 project_directory = '~/git/django-project'
 repository = 'git@github.com:example/example.git'

 def install_git(self):
 """ Installs the ``git`` package. """
 self.host.sudo('apt-get install git')

 def git_clone(self):
 """ Clone repository."""
 with self.host.cd(self.project_directory, expand=True):
 self.host.run("git clone '%s'" % esc1(self.repository))

 def git_checkout(self, commit):
 """ Checkout specific commit (after cloning)."""
 with self.host.cd(self.project_directory, expand=True):
 self.host.run("git checkout '%s'" % esc1(commit))

Probably obvious, we have a clone and checkout function that are meant to go
to a certain directory on the server and run a shell command in there through
run(). Some points worth noting:

	expand=True: this means that we should do tilde-expension. You want the
tilde to be replaced with the home directory. If you have an absolute path,
this isn’t necessary.

	esc1(): This is important to avoid shell
injection. We receive the commit variable from a parameter, and we don’t know
what it will look like. The esc1() escape
function is designed to escape a string for use inside single quotes in a
shell script: note the surrounding quotes in '%s'.

	We need to use sudo() for the installation of
Git, because apt-get needs to have root rights.

Defining the SSH host

Now we are going to define the SSH host. It is recommended to authenticate
through a private key. If you have a ~/.ssh/config setup in a way that
allows you to connect directly through the ssh command by only passing the
address, then you also can drop all the other settings (except the address)
from the SSHHost below.

from deployer.host import SSHHost

class remote_host(SSHHost):
 address = '192.168.1.1' # Replace by your IP address
 username = 'user' # Replace by your own username.
 password = 'password' # Optional, but required for sudo operations
 key_filename = None # Optional, specify the location of the RSA
 # private key

That defines how to access the remote host. If you ever have to define another
host, feel free to use Python inheritance if they share some settings.

Now we have to tell DjangoDeployment node to use this host. The following
syntax may look slightly overkill at first, but this is how we link the
remote_host to the DjangoDeployment. [1] Instead of putting the
Hosts class inside the original DjangoDeployment, you can off course
again –like always in Python– inherit the original class and extend that one
by nesting Hosts in there.

class DjangoDeployment(Node):
 class Hosts:
 host = remote_host

 ...

Put together, we currently have the following in our script:

#!/usr/bin/env python
from deployer.utils import esc1
from deployer.host import SSHHost

class remote_host(SSHHost):
 address = '192.168.1.1' # Replace by your IP address
 username = 'user' # Replace by your own username.
 password = 'password' # Optional, but required for sudo operations
 key_filename = None # Optional, specify the location of the RSA
 # private key

class DjangoDeployment(Node):
 class Hosts:
 host = remote_host

 project_directory = '~/git/django-project'
 repository = 'git@github.com:example/example.git'

 def install_git(self):
 """ Installs the ``git`` package. """
 self.host.sudo('apt-get install git')

 def git_clone(self):
 """ Clone repository."""
 with self.host.cd(self.project_directory, expand=True):
 self.host.run("git clone '%s'" % esc1(self.repository))

 def git_checkout(self, commit):
 """ Checkout specific commit (after cloning)."""
 with self.host.cd(self.project_directory, expand=True):
 self.host.run("git checkout '%s'" % esc1(commit))

if __name__ == '__main':
 start(DjangoDeployment)

If you run this executable, you can already execute the methods if this class
from the interactive shell.

	[1]	The reason is that you can add multiple hosts to a node, and even
multiple hosts to multiple ‘roles’ in a node. This allows for some
more complex setups and parallel deployments.

Configuration management

For most Django projects you also want to have a settings file for the server
configuration. Django projects define a Python module through the environment
variable DJANGO_SETTINGS_MODULE [https://docs.djangoproject.com/en/dev/topics/settings/#envvar-DJANGO_SETTINGS_MODULE]. Usually, these settings are not entirely
the same on a local development machine and the server, you might have another
database or caching server. Often, you have a settings.py in your
repository, while each server still gets a local_settings.py to override
the server specific configurations. (12factor.net [http://12factor.net/] has some good guidelines
about config management.)

Anyway, suppose that you have a configuration that you want to upload to
~/git/django-project/local_settings.py. Let’s create a method for that:

django_settings = \
"""
DATABASES['default'] = ...
SESSION_ENGINE = ...
DEFAULT_FILE_STORAGE = ...
"""

class DjangoDeployment(Node):
 ...
 def upload_django_settings(self):
 """ Upload the content of the variable 'local_settings' in the
 local_settings.py file. """
 with self.host.open('~/git/django-project/local_settings.py') as f:
 f.write(django_settings)

So, by calling open(), we can write to a remote
file on the host, as if it were a local file.

Managing the virtualenv

Virtualenvs can sometimes be very tricky to manage on the server and to use
them in automated scripts. You are working inside a virtualenv if your
$PATH environment is set up to prefer binaries installed at the path of the
virtual env rather than use the system default. If you are working inside a
interactive shell, you may use a tool like workon or something similar to
activate the virtualenv. We don’t want to rely on the availability of these
tools and inclusion of such scripts from a ~/.bashrc. Instead, we can call
the bin/activate by hand to set up a correct $PATH variable. It is
important to prefix all commands that apply to the virtualenv by this
activation command.

In this tutorial we will suppose that you already have a virtualenv created by
hand, called 'project-env'. Lets now create a few reusable functions for
installing stuff inside the virtualenv.

class DjangoDeployment(Node):
 ...
 # Command to execute to work on the virtualenv
 activate_cmd = '. ~/.virtualenvs/project-env/bin/activate'

 def install_requirements(self):
 """
 Script to install the requirements of our Django application.
 (We have a requirements.txt file in our repository.)
 """
 with self.host.prefix(self.activate_cmd):
 self.host.run("pip install -r ~/git/django-project/requirements.txt')

 def install_package(self, name):
 """
 Utility for installing packages through ``pip install`` inside
 the env.
 """
 with self.host.prefix(self.activate_cmd):
 self.host.run("pip install '%s'" % name)

Notice the prefix() context manager that
makes sure that all run() commands are executed
inside the virtualenv.

Running Django management commands

It’s good and useful have to have a helper function somewhere that can execute
Django management commands from the deployment script. You’re going to use it
all the time.

Lets add a run_management_command which accepts a command parameter to
be passed as an argument to ./manage.py. As an example we also add a
django_shell method which starts in interactive django shell on the server.

class DjangoDeployment(Node):
 ...
 def run_management_command(self, command):
 """ Run Django management command in virtualenv. """
 # Activate the virtualenv.
 with self.host.prefix(self.activate_cmd):
 # Go to the directory where we have our 'manage.py' file.
 with self.host.cd('~/git/django-project/'):
 self.host.run('./manage.py %s' % command)

 def django_shell(self):
 """ Open interactive Django shell. """
 self.run_management_command('shell')

Running gunicorn through supervisord

You don’t want to use Django’s runserver on production, so we’re going to
install and configure gunicorn [http://gunicorn.org/]. We are going to use supervisord [http://supervisord.org/] to
mangage the gunicorn process, but depending on your system you meight prefer
systemd [http://en.wikipedia.org/wiki/Systemd] or upstart [http://upstart.ubuntu.com/] instead. We need to install both gunicorn and
supervisord in the environment and create configuration files file both.

Let’s first add a few methods for installing the required packages inside the
virtualenv.

class DjangoDeployment(Node):
 ...

 def install_gunicorn(self):
 """ Install gunicorn inside the virtualenv. """
 self.install_package('gunicorn')

 def install_supervisord(self):
 """ Install supervisord inside the virtualenv. """
 self.install_package('supervisor')

For testing purposes, we add a command to run the gunicorn server from the
shell. [2]

class DjangoDeployment(Node):
 ...

 def run_gunicorn(self):
 """ Run the gunicorn server """
 self.run_management_command('run_gunicorn')

Obviously, you don’t want to keep your shell open all the time. So, let’s
configure supervisord. The following code will upload the supervisord
configuration to /etc/supervisor/conf.d/django-project.conf. This is
similar to uploading the Django configuration earlier.

supervisor_config = \
"""
[program:djangoproject]
command = /home/username/.virtualenvs/project-env/bin/gunicorn_start ; Command to start app
user = username ; User to run as
stdout_logfile = /home/username/logs/gunicorn_supervisor.log ; Where to write log messages
redirect_stderr = true ; Save stderr in the same log
"""

class DjangoDeployment(Node):
 ...

 def upload_supervisor_config(self):
 """ Upload the content of the variable 'supervisor_config' in the
 supervisord configuration file. """
 with self.host.open('/etc/supervisor/conf.d/django-project.conf') as f:
 f.write(supervisor_config)

Gathering again everything we have:

#!/usr/bin/env python
from deployer.utils import esc1
from deployer.host import SSHHost

supervisor_config = \
"""
[program:djangoproject]
command = /home/username/.virtualenvs/project-env/bin/gunicorn_start ; Command to start app
user = username ; User to run as
stdout_logfile = /home/username/logs/gunicorn_supervisor.log ; Where to write log messages
redirect_stderr = true ; Save stderr in the same log
"""

django_settings = \
"""
DATABASES['default'] = ...
SESSION_ENGINE = ...
DEFAULT_FILE_STORAGE = ...
"""

class remote_host(SSHHost):
 address = '192.168.1.1' # Replace by your IP address
 username = 'user' # Replace by your own username.
 password = 'password' # Optional, but required for sudo operations
 key_filename = None # Optional, specify the location of the RSA
 # private key
class DjangoDeployment(Node):
 class Hosts:
 host = remote_host

 project_directory = '~/git/django-project'
 repository = 'git@github.com:example/example.git'

 def install_git(self):
 """ Installs the ``git`` package. """
 self.host.sudo('apt-get install git')

 def git_clone(self):
 """ Clone repository."""
 with self.host.cd(self.project_directory, expand=True):
 self.host.run("git clone '%s'" % esc1(self.repository))

 def git_checkout(self, commit):
 """ Checkout specific commit (after cloning)."""
 with self.host.cd('~/git/django-project', expand=True):
 self.host.run("git checkout '%s'" % esc1(commit))

 # Command to execute to work on the virtualenv
 activate_cmd = '. ~/.virtualenvs/project-env/bin/activate'

 def install_requirements(self):
 """
 Script to install the requirements of our Django application.
 (We have a requirements.txt file in our repository.)
 """
 with self.host.prefix(self.activate_cmd):
 self.host.run("pip install -r ~/git/django-project/requirements.txt')

 def install_package(self, name):
 """
 Utility for installing packages through ``pip install`` inside
 the env.
 """
 with self.host.prefix(self.activate_cmd):
 self.host.run("pip install '%s'" % name)

 def upload_django_settings(self):
 """ Upload the content of the variable 'local_settings' in the
 local_settings.py file. """
 with self.host.open('~/git/django-project/local_settings.py') as f:
 f.write(django_settings)

 def run_management_command(self, command):
 """ Run Django management command in virtualenv. """
 # Activate the virtualenv.
 with self.host.prefix(self.activate_cmd):
 # Cd to the place where we have our 'manage.py' file.
 with self.host.cd('~/git/django-project/'):
 self.host.run('./manage.py %s' % command)

 def django_shell(self):
 """ Open interactive Django shell. """
 self.run_management_command('shell')

 def install_gunicorn(self):
 """ Install gunicorn inside the virtualenv. """
 self.install_package('gunicorn')

 def install_supervisord(self):
 """ Install supervisord inside the virtualenv. """
 self.install_package('supervisor')

 def run_gunicorn(self):
 """ Run the gunicorn server """
 self.run_management_command('run_gunicorn')

 def upload_supervisor_config(self):
 """ Upload the content of the variable 'supervisor_config' in the
 supervisord configuration file. """
 with self.host.open('/etc/supervisor/conf.d/django-project.conf') as f:
 f.write(supervisor_config)

if __name__ == '__main':
 start(DjangoDeployment)

	[2]	See: http://docs.gunicorn.org/en/latest/run.html#django-manage-py

Making stuff reusable

The above deployment script works. But it’s not really reusable. You don’t want
to write a gunicorn configuration for every Django project you’re going to set
up. And you also don’t want to do the same again for a staging environment if
you have the scripts for the production, even when there are minor differences.
So we are going to move hard coded parts out of our code and make our
DjangoDeployment reusable.

A reusable virtualenv class.

Let’s start by putting all the virtualenv related functions in one class. Most
of the script will be the same among projects, except for a few variables:

	The location of the virtualenv

	The packages to be installed there

	The location of a requirements.txt file

A reusable VirtualEnv class could look like this:

class VirtualEnv(Node):
 location = required_property()
 requirements_files = []
 packages = []

 # Command to execute to work on the virtualenv
 @property
 def activate_cmd(self):
 return '. %s/bin/activate' % self.location

 def install_requirements(self):
 """
 Script to install the requirements of our Django application.
 (We have a requirements.txt file in our repository.)
 """
 with self.host.prefix(self.activate_cmd):
 for f in self.requirements_files:
 self.host.run("pip install -r '%s' " % esc1(f))

 def install_package(self, name):
 """
 Utility for installing packages through ``pip install`` inside
 the env.
 """
 with self.host.prefix(self.activate_cmd):
 self.host.run("pip install '%s'" % name)

 def setup_env(self):
 """ Install everything inside the virtualenv """
 # From `self.packages`
 for p in self.packages:
 self.install_package(p)

 # From requirements.txt files
 self.install_requirements()

So we have created another Node class and moved some of
the code we already had in there. The setup_env method is added to group
the installation in one command. One other thing worth noting is the
location class variable, to which required_property()
was assigned. Actually, that is a property that raises an exception when it’s
accessed. The idea there is that we inherit from the VirtualEnv class and
override this variable by an actual value.

Now, to use this in the DjangoDeployment node is now possible by nesting
these classes. As said, we inherit from VirtualEnv and replace the
variables by whatever we need. We also add a setup method in
DjangoDeployment which will eventually do all the setup, so that we only
have to call one method for the first initial setup of our deployment.

class DjangoDeployment(Node):
 ...

 class virtual_env(VirtualEnv):
 location = '~/.virtualenvs/project-env/'
 requirements_files = ['~/git/django-project/requirements.txt']
 packages = ['gunicorn', 'supervisor']

 def setup(self):
 # Install virtual packages
 self.virtual_env.setup_env()

 ...

Did you see what we did? This setup-method does some magic. Take a look at
how we access virtual_env. Normal Python code would return a VirtualEnv
class at that point, so self.virtual_env.setup_env would be a classmethod
and you would get a TypeError: unbound method must be called with ...
exception. But in a Node class, Python acts differently, if we access one
node class which is nested inside another, we’ll automatically get a Node
instance of the inner class. [3]

The reason will probably become clearer if you take a look The self.host
variable. Calling run on self.host will execute commands on that host.
Remember that we defined the host by nesting the Hosts class inside the
DjangoDeployment node? We didn’t have to do that for virtual_env, but
VirtualEnv also expects self.host.run to work. The magic is what we
call mapping of roles/hosts. If not explicitely defined, an instance of the
nested class knows on which hosts to execute by looking at the parent instance,
and they’re linked because the framework instantiates the nested class at the
point that we access from the parent.

You should not worry too much about what happens under the hood, it’s a well
tested and well thought through, but it can be hard to grasp at first.

	[3]	Internally, this works thanks to Python descriptors.

Reusable git class

Let’s do something similar for the git class.

class Git(Node):
 project_directory = required_property()
 repository = required_property()

 def install(self):
 """ Installs the ``git`` package. """
 self.host.sudo('apt-get install git')

 def clone(self):
 """ Clone repository."""
 with self.host.cd(self.project_directory, expand=True):
 self.host.run("git clone '%s'" % esc1(self.repository))

 def checkout(self, commit):
 """ Checkout specific commit (after cloning)."""
 with self.host.cd('~/git/django-project', expand=True):
 self.host.run("git checkout '%s'" % esc1(commit))

And in DjangoDeployment:

class DjangoDeployment(Node):
 ...

 class git(Git):
 project_directory = '~/git/django-project'
 repository = 'git@github.com:example/example.git'

 def setup(self):
 # Clone repository
 self.git.clone()

 # Install virtual packages
 self.virtual_env.setup_env()

Our reusable DjangoDeployment

If we do the same exercise for the other parts of our script we get the
following. The Hosts class is removed by purpose, the reason will become
clear in the following section.

Let’s save the following in a file called django_deployment.py:

from deployer.utils import esc1
from deployer.host import SSHHost

supervisor_config = \
"""
[program:djangoproject]
command = /home/username/.virtualenvs/project-env/bin/gunicorn_start ; Command to start app
user = username ; User to run as
stdout_logfile = /home/username/logs/gunicorn_supervisor.log ; Where to write log messages
redirect_stderr = true ; Save stderr in the same log
"""

django_settings = \
"""
DATABASES['default'] = ...
SESSION_ENGINE = ...
DEFAULT_FILE_STORAGE = ...
"""

class VirtualEnv(Node):
 location = required_property()
 requirements_files = []
 packages = []

 # Command to execute to work on the virtualenv
 @property
 def activate_cmd(self):
 return '. %s/bin/activate' % self.location

 def install_requirements(self):
 """
 Script to install the requirements of our Django application.
 (We have a requirements.txt file in our repository.)
 """
 with self.host.prefix(self.activate_cmd):
 for f in self.requirements_files:
 self.host.run("pip install -r '%s' " % esc1(f))

 def install_package(self, name):
 """
 Utility for installing packages through ``pip install`` inside
 the env.
 """
 with self.host.prefix(self.activate_cmd):
 self.host.run("pip install '%s'" % name)

 def setup_env(self):
 """ Install everything inside the virtualenv """
 # From `self.packages`
 for p in self.packages:
 self.install_package(p)

 # From requirements.txt files
 self.install_requirements()

class Git(Node):
 project_directory = required_property()
 repository = required_property()

 def install(self):
 """ Installs the ``git`` package. """
 self.host.sudo('apt-get install git')

 def clone(self):
 """ Clone repository."""
 with self.host.cd(self.project_directory, expand=True):
 self.host.run("git clone '%s'" % esc1(self.repository))

 def checkout(self, commit):
 """ Checkout specific commit (after cloning)."""
 with self.host.cd('~/git/django-project', expand=True):
 self.host.run("git checkout '%s'" % esc1(commit))

class DjangoDeployment(Node):
 class virtual_env(VirtualEnv):
 location = '~/.virtualenvs/project-env/'
 packages = ['gunicorn', 'supervisor']
 requirements_files = ['~/git/django-project/requirements.txt']

 class git(Git):
 project_directory = '~/git/django-project'
 repository = 'git@github.com:example/example.git'

 def setup(self):
 # Clone repository
 self.git.clone()

 # Install virtual packages
 self.virtual_env.setup_env()

 def upload_django_settings(self):
 """ Upload the content of the variable 'local_settings' in the
 local_settings.py file. """
 with self.host.open('~/git/django-project/local_settings.py') as f:
 f.write(django_settings)

 def run_management_command(self, command):
 """ Run Django management command in virtualenv. """
 # Activate the virtualenv.
 with self.host.prefix(self.activate_cmd):
 # Cd to the place where we have our 'manage.py' file.
 with self.host.cd('~/git/django-project/'):
 self.host.run('./manage.py %s' % command)

 def django_shell(self):
 """ Open interactive Django shell. """
 self.run_management_command('shell')

 def run_gunicorn(self):
 """ Run the gunicorn server """
 self.run_management_command('run_gunicorn')

 def upload_supervisor_config(self):
 """ Upload the content of the variable 'supervisor_config' in the
 supervisord configuration file. """
 with self.host.open('/etc/supervisor/conf.d/django-project.conf') as f:
 f.write(supervisor_config)

Adding hosts

The file that we saved to django_deployment.py in the previous section did
not contain any hosts. So, it’s rathar a template of a deployment script that
we are going to apply here on a host. We inherit from DjangoDeployment and
add the hosts.

#!/usr/bin/env python

class remote_host(SSHHost):
 address = '192.168.1.1' # Replace by your IP address
 username = 'user' # Replace by your own username.
 password = 'password' # Optional, but required for sudo operations
 key_filename = None # Optional, specify the location of the RSA
 # private key
class DjangoDeploymentOnHost(DjangoDeployment):
 class Hosts:
 host = remote_host

 # Override a few properties of the parent.
 virtual_env__location = '~/.virtualenvs/project-env-2/'
 git__project_directory = '~/git/django-project-2'

if __name__ == '__main':
 start(DjangoDeploymentOnHost)

Class inheritance is powerful in Python. But did you notice the that we never
had a git__project_directory or virtual_env__location variable before?
This is again some magic. It’s a pattern that very offen occurs in this
framework. Python has no easy way to write that you want to override a property
of the nested class. We introduced double underscore expansion which tells Python that in our case that if a
member of a node class has double underscores in its name, it means that we are
overriding a property of a nested node. In this case we override the
location property of the virtual_env class of the parent and the value
of project_directory of the nested git class.

That’s it. This script is executable and if you start it, you have a nice
interactive shell from which you can run all the commands.

And now?

The script can still even more be improved. For instance, in
deployer.contrib.nodes.config is a nice Config class that we could use
for managing the Django and supervisord settings. It contains a few handy
functions for comparing the content of the remote file with that of what we
would overwrite it with.

Also, learn about query expressions and the
parent variable which are very powerful.

Architecture of roles and nodes

In this chapter, we go a little more in depth on what a
Node really is.

Use cases

Before we go in depth, let’s first look at a typical set-up of a web server.
The following picture displays serveral connected components. It contains a web
server connected to some database back-ends, and a load balancer in front of
it. Every component appears exactly once.

[image: digraph web_components { "Load balancer" [style=filled, fillcolor=darkorchid1]; "Web server" [style=filled, fillcolor=darkolivegreen1]; "Cache" [style=filled, fillcolor=gold1]; "Queue" [style=filled, fillcolor=pink1]; "Master database" [style=filled, fillcolor=steelblue1]; "Slave database" [style=filled, fillcolor=cadetblue1]; "Load balancer" -> "Web server"; "Web server" -> "Master database"; "Web server" -> "Slave database"; "Web server" -> "Cache"; "Web server" -> "Queue"; "Master database" -> "Slave database"; }]
Now we are going to scale. If we triple the amount of web servers, and put an
extra load balancer in front of our system. We end up with many more arrows.

[image: digraph web_components { "Load balancer 1" [style=filled, fillcolor=darkorchid1]; "Load balancer 2" [style=filled, fillcolor=darkorchid1]; "Web server 1" [style=filled, fillcolor=darkolivegreen1]; "Web server 2" [style=filled, fillcolor=darkolivegreen1]; "Web server 3" [style=filled, fillcolor=darkolivegreen1]; "Cache" [style=filled, fillcolor=gold1]; "Queue" [style=filled, fillcolor=pink1]; "Master database" [style=filled, fillcolor=steelblue1]; "Slave database" [style=filled, fillcolor=cadetblue1]; "Load balancer 1" -> "Web server 1"; "Load balancer 1" -> "Web server 2"; "Load balancer 1" -> "Web server 3"; "Load balancer 2" -> "Web server 1"; "Load balancer 2" -> "Web server 2"; "Load balancer 2" -> "Web server 3"; "Web server 1" -> "Master database"; "Web server 1" -> "Slave database"; "Web server 1" -> "Cache"; "Web server 1" -> "Queue"; "Web server 2" -> "Master database"; "Web server 2" -> "Slave database"; "Web server 2" -> "Cache"; "Web server 2" -> "Queue"; "Web server 3" -> "Master database"; "Web server 3" -> "Slave database"; "Web server 3" -> "Cache"; "Web server 3" -> "Queue"; "Master database" -> "Slave database"; }]
It’s even possible that we have several instaces of all this. A local
development set-up, a test server, a staging server, and a production server.
Let’s see:

[image: digraph G { compound=true; subgraph cluster_local { "ws 0" [style=filled, fillcolor=darkolivegreen1]; "c 0" [style=filled, fillcolor=gold1]; "q 0" [style=filled, fillcolor=pink1]; "db 0" [style=filled, fillcolor=steelblue1]; label="Local"; "ws 0" -> "db 0"; "ws 0" -> "c 0"; "ws 0" -> "q 0"; } subgraph cluster1 { "lb 1" [style=filled, fillcolor=darkorchid1]; "ws 1" [style=filled, fillcolor=darkolivegreen1]; "c 1" [style=filled, fillcolor=gold1]; "q 1" [style=filled, fillcolor=pink1]; "master db 1" [style=filled, fillcolor=steelblue1]; "slave db 1" [style=filled, fillcolor=steelblue1]; label="Testing"; "lb 1" -> "ws 1"; "ws 1" -> "master db 1"; "ws 1" -> "slave db 1"; "ws 1" -> "c 1"; "ws 1" -> "q 1"; "master db 1" -> "slave db 1"; } }]
[image: digraph G2 { compound=true; subgraph cluster2 { "lb 2" [style=filled, fillcolor=darkorchid1]; "ws 2" [style=filled, fillcolor=darkolivegreen1]; "c 2" [style=filled, fillcolor=gold1]; "q 2" [style=filled, fillcolor=pink1]; "master db 2" [style=filled, fillcolor=steelblue1]; "slave db 2" [style=filled, fillcolor=steelblue1]; label="Staging"; "lb 2" -> "ws 2"; "ws 2" -> "master db 2"; "ws 2" -> "slave db 2"; "ws 2" -> "c 2"; "ws 2" -> "q 2"; "master db 2" -> "slave db 2"; } subgraph cluster3 { "lb 3" [style=filled, fillcolor=darkorchid1]; "lb 4" [style=filled, fillcolor=darkorchid1]; "ws 3" [style=filled, fillcolor=darkolivegreen1]; "ws 4" [style=filled, fillcolor=darkolivegreen1]; "ws 5" [style=filled, fillcolor=darkolivegreen1]; "c 3" [style=filled, fillcolor=gold1]; "q 3" [style=filled, fillcolor=pink1]; "master db 3" [style=filled, fillcolor=steelblue1]; "slave db 3" [style=filled, fillcolor=steelblue1]; label="Production"; "lb 3" -> "ws 3"; "lb 3" -> "ws 4"; "lb 3" -> "ws 5"; "lb 4" -> "ws 3"; "lb 4" -> "ws 4"; "lb 4" -> "ws 5"; "ws 3" -> "master db 3"; "ws 3" -> "slave db 3"; "ws 3" -> "c 3"; "ws 3" -> "q 3"; "ws 4" -> "master db 3"; "ws 4" -> "slave db 3"; "ws 4" -> "c 3"; "ws 4" -> "q 3"; "ws 5" -> "master db 3"; "ws 5" -> "slave db 3"; "ws 5" -> "c 3"; "ws 5" -> "q 3"; "master db 3" -> "slave db 3"; } }]
Obviously we don’t want to write 4 different deployment scripts. The components
are exacty the same every time, the only difference is that the amount of how
many times a certain component appears is not always the same.

In this example, we can identify 4 roles:

	Load balancer

	Cache server

	Queue server

	Master database

	slave database

Creating nodes

Now we are going to create Node classes. A Node
is probably the most important class in this framework, because basically all
deployment code is structured in node. Every circle in the above diagrams can
be considered a node.

So we are going to write a script that contains all these connected parts or
nodes. Basically, it’s one container node, and childnodes for all the
components that we have. As an example, we also add the Git component where
we’ll put in the commands for checking the web server code out from our version
control system.

from deployer.node import Node

class WebSystem(Node):
 class Cache(Node):
 pass

 class Queue(Node):
 pass

 class LoadBalancer(Node):
 pass

 class Database(Node):
 pass

 class Git(Node):
 pass

The idea is that if we create multiple instances of WebSystem here, we only
have to tell the root node which roles map to which hosts. We can use
inheritance to override the WebSystem node and add Hosts to the derived
classes. Wrapping it in RootNode is not really necassary, but cool to
group these if we’d put an interactive shell around it.

class RootNode(Node):
 class StagingSystem(WebSystem):
 class Hosts:
 load_balancer= { StagingHost0 }
 web = { StagingHost0 }
 master_db = { StagingHost0 }
 slave_db = set() # If empty, this line can be left away.
 queue = { StagingHost0 }
 cache = { StagingHost0 }

 class ProductionSystem(WebSystem):
 class Hosts:
 load_balancer = { LB0, LB1 }
 web = { WebServer1, WebServer2, WebServer3 }
 master_db = { MasterDB }
 slave_db = { SlaveDB }
 queue = { QueueHost }
 cache = { CacheHost }

Note that on the staging system, the same physical host is assigned to all the
roles. That’s fine: the web server can also act as load balancer, as well as a
cache or queue server. On the production side, we separate them on different
machines.

Now it’s up to the framework to the figure out which hosts belong to which
childnodes. With a little help of the map_roles decorator, that’s
possible. We adjust the original WebSystem node as follows:

from deployer.node import Node, map_roles

class WebSystem(Node):
 """
 roles: cache, queue, master_db, slave_db, web.
 """
 @map_roles(host='cache')
 class Cache(Node):
 pass

 @map_roles(host='queue')
 class Queue(Node):
 pass

 @map_roles(host='queue')
 class LoadBalancer(Node):
 pass

 @map_roles(master='master_db', slave='slave_db')
 class Database(Node):
 pass

 @map_roles(host=['www', 'load_balancer', 'queue'])
 class Git(Node):
 def checkout(self, commit):
 self.hosts.run('git checkout %s' % commit)

@map_roles needs a list of keyword arguments. The value can be either a
string or list and decribes the roles of the parent node, and the key
tells the new role in the child node to which these hosts are assigned.

If we now type self.hosts.run('shell command') in for instance the
Database child node, it will only run in the hosts assigned there. In the
case of our ProductionSystem above, that’s on MasterDB and SlaveDB.
In the case of Git.checkout above, the run-command will execute on all
hosts that were mapped to the role host.

More complete example

Below, we present a more complete example with real actions like start and
stop. The queue, the cache and the database, they have some methods in
common, – in fact they are all upstart services –, so therefor we created a
base class UpstartService that handles the common parts.

#!/usr/bin/env python
from deployer.node import Node, map_roles, required_property
from deployer.utils import esc1

from our_nodes import StagingHost0, LB0, LB1, WebServer1, WebServer2, \
 WebServer3, MasterDB, SlaveDB, QueueHost, CacheHost

class UpstartService(Node):
 """
 Abstraction for any upstart service with start/stop/status methods.
 """
 name = required_property()

 def start(self):
 self.hosts.sudo('service %s start' % esc1(self.name))

 def stop(self):
 self.hosts.sudo('service %s stop' % esc1(self.name))

 def status(self):
 self.hosts.sudo('service %s status' % esc1(self.name))

class WebSystem(Node):
 """
 The base definition of our web system.

 roles: cache, queue, master_db, slave_db, web.
 """
 @map_roles(host='cache')
 class Cache(UpstartService):
 name = 'redis'

 @map_roles(host='queue')
 class Queue(UpstartService):
 name = 'rabbitmq'

 @map_roles(host='queue')
 class LoadBalancer(Node):
 # ...
 pass

 @map_roles(master='master_db', slave='slave_db')
 class Database(UpstartService):
 name = 'postgresql'

 @map_roles(host=['www', 'load_balancer', 'queue'])
 class Git(Node):
 def checkout(self, commit):
 self.hosts.run('git checkout %s' % esc1(commit))

 def show(self):
 self.hosts.run('git show')

class RootNode(Node):
 """
 The root node of our configuration, containing two 'instances' of
 `WebSystem`,
 """
 class StagingSystem(WebSystem):
 class Hosts:
 load_balancer = { StagingHost0 }
 web = { StagingHost0 }
 master_db = { StagingHost0 }
 slave_db = set() # If empty, this line can be left away.
 queue = { StagingHost0 }
 cache = { StagingHost0 }

 class ProductionSystem(WebSystem):
 class Hosts:
 load_balancer = { LB0, LB1 }
 web = { WebServer1, WebServer2, WebServer3 }
 master_db = { MasterDB }
 slave_db = { SlaveDB }
 queue = { QueueHost }
 cache = { CacheHost }

if __name__ == '__main__':
 start(RootNode)

So, in this example, if Staginghost0, LB0 and the others were real
deployer.host.Host definitions, we could start
an interactive shell. Then we could for instance
navigate to the database of the production system, by typing
“cd ProductionSystem Database” and then “start” to execute the command.

The interactive shell

It’s very easy to create an interactive command line shell from a node tree.
Suppose that you have a Node called
MyRootNode, then you can create a shell by making an executable file like
this:

#!/usr/bin/env python
from deployer.client import start
from deployer.node import Node

class MyRootNode(Node):
 ...

if __name__ == '__main__':
 start(MyRootNode)

If you save this as client.py and call it by typing python ./client.py
--help, the following help text will be shown:

Usage:
 ./client.py run [-s | --single-threaded | --socket SOCKET] [--path PATH]
 [--non-interactive] [--log LOGFILE] [--scp]
 [--] [ACTION PARAMETER...]
 ./client.py listen [--log LOGFILE] [--non-interactive] [--socket SOCKET]
 ./client.py connect (--socket SOCKET) [--path PATH] [--scp]
 [--] [ACTION PARAMETER...]
 ./client.py telnet-server [--port PORT] [--log LOGFILE] [--non-interactive]
 ./client.py list-sessions
 ./client.py scp
 ./client.py -h | --help
 ./client.py --version

Options:
 -h, --help : Display this help text.
 -s, --single-threaded : Single threaded mode.
 --path PATH : Start the shell at the node with this location.
 --scp : Open a secure copy shell.
 --non-interactive : If possible, run script with as few interactions as
 possible. This will always choose the default
 options when asked for questions.
 --log LOGFILE : Write logging info to this file. (For debugging.)
 --socket SOCKET : The path of the unix socket.
 --version : Show version information.

There are several options to start such a shell. It can be multi or single
threaded, or you can run it as a telnet-server. Assuming you made the file also
executable using chmod +x client.py, you just type the following to get the
interactive prompt:

./client.py run

Navigation

Navigation is very similar to navigating in a Bash shell.

	Command
	Meaning

	cd
	cd node_name will move to a certain node. cd - will
move back to the previous node. cd .. will move to the
and cd / will move to the root node. It’s the same as a
Bash shell, except that spaces are used instead of slashes
when several nodes are chained, e.g. cd node childnode.

	ls
	Move to a certain node

	pwd
	Print current node (directory)

	find
	Recursively list all the childnode. Press q to quit the
pager.

	exit
	Leave the deployment shell.

	clear
	Clear the screen.

Running node actions

In order to execute an action of the current node, just type the name of the
action and press enter. Follow the action name by a space and a value if you
want to pass that value as parameter.

Sandboxed execution is possible by preceding the action name by the word
sandbox. e.g. type: sandbox do_something param. This will run the
action, like usual, but it won’t execute the actual commands on the hosts,
instead it will execute a syntax-checking command instead.

Special commands

Some special commands, starting with double dash:

	Command
	Meaning

	--inspect
	Show information about the current node.

This displays the file where the node has been defined,
the hosts that are bound to this node and the list of
actions child nodes that it contains.

	--source-code
	Display the source code of the current node.

	--connect
	Open an interactive (bash) shell on a host of this
node. It will ask which host to connect if there are
several hosts in this node.

	--version
	Show version information.

	--scp
	Open an SCP shell.

	--run
	Run a shell command on all hosts in the current node.

	--run-with-sudo
	Identical to --run, but using sudo

For --inspect, --source-code and --connect, it’s possible to pass
the name or path of another node as parameter. E.g.: --connect node
child_node.

The SCP (secure copy) shell

Typing --scp in the main shell will open a subshell in which you can run
SCP commands. This is useful for manually downloading and uploading files to
servers.

	Where
	Command
	Meaning

	Remote
	cd <directory>
	Go to another directory at the server.

	pwd
	Print working directory at the server.

	stat <file>
	Print information about file or
directory on the server.

	edit <file>
	Open this file in an editor (vim)
on the server.

	connect
	Open interactive (bash) shell at the
at the server.

	Local
	lcd <directory>
	Go locally to another directory.

	lpwd
	Print local working directory.

	lstat <file>
	Print information about a local file
or directory.

	ledit <file>
	Open this local file in an editor

	lconnect
	Open local interactive (bash) shell
at this directory.

	File operations
	put <file>
	Upload this local file to the server.

	get <file>
	Download remote file from the server.

	Other
	exit
	Return to the main shell.

	clear
	Clear screen.

The node object

The Node class is probably the most
important class of this framework. See architecture of roles and nodes for a high level overview of what a Node
exactly is.

A simple example of a node:

from deployer.node import ParallelNode

class SayHello(ParallelNode):
 def hello(self):
 self.host.run('echo hello world')

Note

It is interesting to know that self is actually not a
Node instance like you would expect, but an
Env object which will proxy this actual Node
class. This is because there is some metaclass magic going on, which
takes care of sandboxing, logging and some other nice stuff, that you get
for free.

Except that a few other variables like self.console are available, you normally won’t notice
anything.

Running the code

In order to run methods of a node, it has to be wrapped in an
Env object. This will manage execution, optional
sandboxing, logging and much more. It will also make sure that
self.hosts actually becomes a
HostsContainer, a proxy through which you can
run methods on a series of hosts.

The easiest way to wrap a node inside an Env is by
using the default_from_node() helper. This will
make sure that you can see the output and you can interact.

from deployer.node import Env

env = Env.default_from_node(MyNode())
env.hello()

Inheritance

A node is meant to be reusable. It is encouraged to inherit from such a node
class and overwrite properties or class members.

Expansion of double underscores

The double underscore expansion is a kind of syntactic sugar to make overriding
more readable.

Suppose we already had a node like this:

class WebApp(Node):
 class Nginx(Node):
 class Server(Node):
 domain = 'www.example.com'

Now, we’d like to inherit from WebApp, but change the
Nginx.Server.domain property there to ‘mydomain.com’. Normally, in Python,
you do this:

class MyWebApp(WebApp):
 class Nginx(WebApp.Nginx):
 class Server(WebApp.Nginx.Server):
 domain = 'mydomain.com'

This is not too bad, but if you have a lot of nested classes, it can become
pretty ugly. Therefor, the Node class has
some magic which allows us to do this instead:

class MyWebApp(WebApp):
 Nginx__Server__domain = 'mydomain.com'

If you’d like, you can also use the same syntax to add function to the inner
classes:

class MyWebApp(WebApp):
 def Nginx__Server__get_full_domain(self):
 # Note that 'self' points to the 'Server' class at this point,
 # not to 'Webapp'!
 return 'http://%s' % self.domain

The importance of ParallelNode

There are several kind of setups. You can have many hosts which are all doing
exactly the same, or many hosts that do something different. Simply said,
ParallelNode should be used when you
have many hosts in your node that all do exactly the same. Actions on such a
ParallelNode can be executed in
parallel. The hosts are equal but also independend and don’t need to know about
each other. An example is an array of stateless web servers.

A typical setup consists of a root node which is just a normal
Node, with several arrays of
ParallelNode nested inside.

Isolation of hosts in ParallelNode.

Take the following example:

class WebSystem(ParallelNode):
 class Hosts:
 host = { Host1, Host2, Host3, Host4 }

 def checkout_git(self, commit):
 self.host.run("git checkout '%s'" % esc1(commit))

 def restart(self):
 self.host.run("nginx restart")

 def deploy(self, commit):
 self.checkout_git(commit)
 self.restart()

We see a ParallelNode class with
three actions and four Hosts mapped to the role host of this node. Because
of the isolation that ParallelNode
provides, it is possible to call any of the four actions independently on any
of the four hosts. Look how our WebSystem acts like an array:

websystem = Env.default_from_node(WebSystem())
websystem[Host1].deploy('abcde6565eee...')
websystem[Host2].restart()

We can also call an action directly without specifying a host. This will allow
parallel execution. It says: call this action on every cell of the array. They
are independent and unordered in this case, so we don’t have to run the deploy
sequentially.

websystem = Env.default_from_node(WebSystem())
websystem.deploy('abcde6565eee...') # Parallel execution.

Note

One thing worth noting is that there is a variable
host in the class. This is
because the isolation always happens by convention on the role named
host. Both sides of the following equation will represent a
HostContainer containing exactly
one host: the host of the current isolation.

self.host == self.hosts.filter('host')

If there happen to be hosts mapped to other roles, they will simply
become available for every instance in the role named host. If
you’d call self.hosts.filter('other_role'), that would still
work.

.Array and .JustOne

.Array and .JustOne are required for nesting a
ParallelNode inside a normal
Node. The idea is that when host roles are
mapped from the parent Node, to the child –
which is a ParallelNode –, that
this childnode behaves as an array. Each ‘cell’ in the array is isolated, so
it’s possible to execute a command on just one ‘cell’ (or host) of the array or
all ‘cells’ (or hosts.) You can use it as follows:

class NormalNode(Node):
 class OurParallelNode(ParallelNode.Array):
 class PNode(ParallelNode):
 pass

Basically, you can nest ‘normal’ nodes inside each other, and
ParallelNode classes inside each
other. However, when nesting such a ParallelNode inside a normal node, the .Array suffix
is required to indicate the creation of an array. .JustOne can always be
used instead of an array, if you assert that only one host will be in there.

Using contrib.nodes

The deployer framework is delivered with a contrib.nodes directory which
contains nodes that should be generic enough to be usable by a lot of people.
Even if you can’t use them in your case, they may be good examples of how to do
certain things. So don’t be afraid to look at the source code, you can learn some
good practices there. Take these and inherit as you want to, or start from
scratch if you prefer that way.

Some recommended contrib nodes:

	deployer.contrib.nodes.config.Config

This a the base class that we are using for every configuration file. It is
very useful for when you are automatically generating server configurations
according to specific deployment configurations. Without any efford, this
class will allow you to do diff’s between your new, generated config, and
the config that’s currently on the server side.

Reference

See Node reference.

Node reference

Note

Maybe it’s useful to read the read about
the node object first.

	
class deployer.node.base.Action(attr_name, node_instance, func, is_property=False, is_query=False, query=None)

	Node actions, which are defined as just functions, will be wrapped into
this Action class. When one such action is called, this class will make
sure that a correct env object is passed into the function as its first
argument.
:param node_instance: The Node Env to which this Action is bound.
:type node_instance: None or deployer.node.Env

	
class deployer.node.base.Env(node, pty=None, logger=None, is_sandbox=False)

	Wraps a deployer.node.Node into an executable context.

n = Node()
e = Env(n)
e.do_action()

Instead of self, the first parameter of a Node-action will be this
Env instance. It acts like a proxy to the Node, but in the meantime
it takes care of logging, sandboxing, the terminal and context.

Note

Node actions can never be executed directly on the node instance,
without wrapping it in an Env object first. But if you use the
interactive shell, the shell will do this
for you.

	Parameters:	
	node (deployer.node.Node) – The node that this Env should wrap.

	pty (deployer.pseudo_terminal.Pty) – The terminal object that wraps the input and output streams.

	logger (deployer.logger.LoggerInterface) – (optional) The logger interface.

	is_sandbox (bool) – Run all commands in here in sandbox mode.

	
console

	Interface for user input. Returns a deployer.console.Console
instance.

	
classmethod default_from_node(node)

	Create a default environment for this node to run.

It will be attached to stdin/stdout and commands will be logged to
stdout. The is the most obvious default to create an Env instance.

	Parameters:	node – Node instance

	
hosts

	deployer.host_container.HostsContainer instance. This is the
proxy to the actual hosts.

	
initialize_node(node_class)

	Dynamically initialize a node from within another node.
This will make sure that the node class is initialized with the
correct logger, sandbox and pty settings. e.g:

	Parameters:	node_class – A Node subclass.

class SomeNode(Node):
 def action(self):
 pass

class RootNode(Node):
 def action(self):
 # Wrap SomeNode into an Env object
 node = self.initialize_node(SomeNode)

 # Use the node.
 node.action2()

	
class deployer.node.base.EnvAction(env, action)

	Action wrapped by an Env object.
Calling this will execute the action in the environment.

	
class deployer.node.base.IsolationIdentifierType

	Manners of identifing a node in an array of nodes.

	
HOSTS_SLUG = 'HOSTS_SLUG'

	Use a tuple of Host slugs

	
HOST_TUPLES = 'HOST_TUPLES'

	Use a tuple of Host classes

	
INT_TUPLES = 'INT_TUPLES'

	Use a tuple of integers

	
class deployer.node.base.Node(parent=None)

	This is the base class for any deployment node.

For the attributes, also have a look at the proxy class
deployer.node.Env. The parent parameter is used internally to
pass the parent Node instance into here.

	
Hosts = None

	Hosts can be None or a definition of the hosts that should be used for this node.
e.g.:

class MyNode(Node):
 class Hosts:
 role1 = [LocalHost]
 role2 = [SSHHost1, SSHHost2]

	
parent

	Reference to the parent Node.
(This is always assigned in the constructor. You should never override it.)

	
class deployer.node.base.NodeBase

	Metaclass for Node. This takes mostly care of wrapping Node members
into the correct descriptor, but it does some metaclass magic.

	
class deployer.node.base.ParallelActionResult(isolations_and_results)

	When an action of a ParallelNode was called from outside the parallel node
itself, a ParallelActionResult instance is returned. This contains the
result for each isolation.

(Unconventional, but) Iterating through the ParallelActionResult class
will yield the values (the results) instead of the keys, because of
backwards compatibility and this is typically what people are interested in
if they run:
for result in node.action(...).

The keys, items and values functions work as usual.

	
class deployer.node.base.ParallelNode(parent=None)

	A ParallelNode is a Node which has only one role, named host.
Multiple hosts can be given for this role, but all of them will be isolated,
during execution. This allows parallel executing of functions on each ‘cell’.

If you call a method on a ParallelNode, it will be called one for every
host, which can be accessed through the host property.

	Note:	This was called SimpleNode before.

	
host

	This is the proxy to the active host.

	Returns:	HostContainer instance.

	
deployer.node.base.SimpleNode

	Deprecated alias for ParallelNode

alias of ParallelNode

	
deployer.node.base.SimpleNodeBase

	Deprecated alias for ParallelNodeBase

alias of ParallelNodeBase

	
deployer.node.base.iter_isolations(node, identifier_type='INT_TUPLES')

	Yield (index, Node) for each isolation of this node.

	
class deployer.node.base.required_property(description='')

	Placeholder for properties which are required when a service is inherit.

class MyNode(Node):
 name = required_property()

 def method(self):
 # This will raise an exception, unless this class was
 # inherited, and `name` was filled in.
 print (self.name)

Decorators

	
deployer.node.decorators.suppress_action_result(action)

	When using a deployment shell, don’t print the returned result to stdout.
For example, when the result is superfluous to be printed, because the
action itself contains already print statements, while the result
can be useful for the caller.

	
deployer.node.decorators.dont_isolate_yet(func)

	If the node has not yet been separated in serveral parallel, isolated
nodes per host. Don’t do it yet for this function.
When anothor action of the same host without this decorator is called,
the node will be split.

It’s for instance useful for reading input, which is similar for all
isolated executions, (like asking which Git Checkout has to be taken),
before forking all the threads.

Note that this will not guarantee that a node will not be split into
its isolations, it does only say, that it does not have to. It is was
already been split before, and this is called from a certain isolation,
we’ll keep it like that.

	
deployer.node.decorators.isolate_one_only(func)

	When using role isolation, and several hosts are available, run on only
one role. Useful for instance, for a database client. it does not make
sense to run the interactive client on every host which has database
access.

	
deployer.node.decorators.alias(name)

	Give this node action an alias. It will also be accessable using that
name in the deployment shell. This is useful, when you want to have special
characters which are not allowed in Python function names, like dots, in
the name of an action.

Role mapping

	
deployer.node.role_mapping.ALL_HOSTS = ALL_HOSTS

	Constant to indicate in a role mapping that all hosts of the parent should be
mapped to this role.

	
deployer.node.role_mapping.map_roles

	alias of RoleMapping

	
class deployer.node.role_mapping.DefaultRoleMapping(*host_mapping, **mappings)

	Default mapping: take the host container from the parent.

Host

This module contains the immediate wrappers around the remote hosts and their
terminals. It’s possible to run commands on a host directly by using these
classes. As an end-user of this library however, you will call the methods of
SSHHost and LocalHost
through HostsContainer, the
host proxy of a Node.

Base classes

	
class deployer.host.base.Host(pty=None, logger=None)

	Abstract base class for SSHHost and LocalHost.

	Parameters:	
	pty (deployer.pseudo_terminal.Pty) – The pseudo terminal wrapper which handles the stdin/stdout.

	logger (LoggerInterface) – The logger interface.

class MyHost(SSHHost):
 ...
my_host = MyHost()
my_host.run('pwd', interactive=False)

	
copy(pty=None)

	Create a deep copy of this Host class.
(the pty-parameter allows to bind it to anothor pty)

	
exists(filename, use_sudo=True, **kw)

	Returns True when a file named filename exists on this hosts.

	
get_file(remote_path, local_path, use_sudo=False, sandbox=False)

	Download this remote_file.

	
get_ip_address(interface='eth0')

	Return internal IP address of this interface.

	
get_start_path()

	The path in which commands at the server will be executed.
by default. (if no cd-statements are used.)
Usually, this is the home directory.
It should always return an absolute path, starting with ‘/’

	
getcwd()

	Return current working directory as absolute path.

	
ifconfig()

	Return the network information for this host.

	Returns:	An IfConfig instance.

	
listdir_stat(path='.')

	Return a list of Stat instances for each file in this directory.

	
open(remote_path, mode='rb', use_sudo=False, sandbox=False)

	Open file handler to remote file. Can be used both as:

with host.open('/path/to/somefile', 'wb') as f:
 f.write('some content')

or:

host.open('/path/to/somefile', 'wb').write('some content')

	
password = ''

	Password for connecting to the host. (for sudo)

	
put_file(local_path, remote_path, use_sudo=False, sandbox=False)

	Upload this local_file to the remote location.

	
run(command, use_sudo=False, sandbox=False, interactive=True, user=None, ignore_exit_status=False, initial_input=None, silent=False)

	Execute this shell command on the host.

	Parameters:	
	command (basestring) – The shell command.

	use_sudo (bool) – Run as superuser.

	sandbox (bool) – Validate syntax instead of really executing. (Wrap the command in bash -n.)

	interactive (bool) – Start an interactive event loop which allows
interaction with the remote command. Otherwise, just return the output.

	initial_input – When interactive, send this input first to the host.

	
slug = ''

	The slug should be a unique identifier for the host.

	
start_interactive_shell(command=None, initial_input=None)

	Start an interactive bash shell.

	
sudo(command, use_sudo=False, sandbox=False, interactive=True, user=None, ignore_exit_status=False, initial_input=None, silent=False)

	Wrapper around run() which uses sudo.

	
username = ''

	Username for connecting to the Host

	
class deployer.host.base.HostContext

	A push/pop stack which keeps track of the context on which commands
at a host are executed.

(This is mainly used internally by the library.)

	
cd(path, expand=False)

	Execute commands in this directory. Nesting of cd-statements is
allowed.

with host.cd('directory'):
 host.run('ls')

	Parameters:	expand (bool) – Expand tildes.

	
copy()

	Create a deep copy.

	
env(variable, value, escape=True)

	Set this environment variable

with host.cd('VAR', 'my-value'):
 host.run('echo $VAR')

	
prefix(command)

	Prefix all commands with given command plus &&.

with host.prefix('workon environment'):
 host.run('./manage.py migrate')

	
class deployer.host.base.Stat(stat_result, filename)

	Base Stat class

	
is_dir

	True when this is a directory.

	
is_file

	True when this is a regular file.

	
st_gid

	Group ID

	
st_size

	File size in bytes.

	
st_uid

	User ID

Localhost

	
class deployer.host.local.LocalHost(pty=None, logger=None)

	LocalHost can be used instead of SSHHost for local execution.
It uses pexpect underneat.

	
listdir_stat(path='.')

	Return a list of Stat instances for each file in this directory.

	
start_interactive_shell(command=None, initial_input=None)

	Start an interactive bash shell.

SSH Host

	
class deployer.host.ssh.SSHHost(*a, **kw)

	SSH Host.

For the authentication, it’s required to provide either a password, a
key_filename or rsa_key. e.g.

class WebServer(SSHHost):
 slug = 'webserver'
 password = '...'
 address = 'example.com'
 username = 'jonathan'

	
address = 'example.com'

	SSH Address

	
config_filename = '~/.ssh/config'

	SSH config file (optional)

	
get_start_path()

	The path in which commands at the server will be executed.
by default. (if no cd-statements are used.)
Usually, this is the home directory.
It should always return an absolute path, starting with ‘/’

	
keepalive_interval = 30

	SSH keep alive in seconds

	
key_filename = None

	RSA key filename (optional)

	
listdir_stat(path='.')

	Return a list of Stat instances for each file in this directory.

	
port = 22

	SSH Port

	
rsa_key = None

	RSA key. (optional)

	
rsa_key_password = None

	RSA key password. (optional)

	
start_interactive_shell(command=None, initial_input=None, sandbox=False)

	Start /bin/bash and redirect all SSH I/O from stdin and to stdout.

	
timeout = 10

	Connection timeout in seconds.

	
username = ''

	SSH Username

host_container

Access to hosts from within a Node class happens
through a HostsContainer proxy. This
container object has also methods for reducing the amount of hosts on which
commands are executed, by filtering according to conditions.

The hosts property of
Env wrapper around a node instance returns such a
HostsContainer object.

class MyNode(Node):
 class Hosts:
 web_servers = { Host1, Host2 }
 caching_servers = Host3

 def do_something(self):
 # ``self.hosts`` here is a HostsContainer instance.
 self.hosts.filter('caching_servers').run('echo hello')

Reference

	
class deployer.host_container.HostsContainer(hosts, pty=None, logger=None, is_sandbox=False)

	Proxy to a group of Host instances.

For instance, if you have a role, name ‘www’ inside the container, you
could do:

host_container.run(...)
host_container[0].run(...)
host_container.filter('www')[0].run(...)

Typically, you get a HostsContainer class
by accessing the hosts property of an
Env (Node
wrapper.)

	
cd(path, expand=False)

	Execute commands in this directory. Nesting of cd-statements is
allowed.

Call cd() on the
HostContext of every host.

with host_container.cd('directory'):
 host_container.run('ls')

	
env(variable, value, escape=True)

	Sets an environment variable.

This calls env() on the
HostContext of every host.

with host_container.cd('VAR', 'my-value'):
 host_container.run('echo $VAR')

	
exists(filename, use_sudo=True)

	Returns an array of boolean values that represent whether this a file
with this name exist for each host.

	
filter(*roles)

	Returns a new HostsContainer instance, containing only the hosts
matching this filter. The hosts are passed by reference, so if you’d
call cd() on the returned container, it will also effect the hosts in
this object.

Examples:

hosts.filter('role1', 'role2')

	
classmethod from_definition(hosts_class, **kw)

	Create a HostsContainer from a Hosts class.

	
get_hosts()

	Return a set of deployer.host.Host classes that appear in this
container. Each deployer.host.Host class will abviously
appear only once in the set, even when it appears in several roles.

	
get_hosts_as_dict()

	Return a dictionary which maps all the roles to the set of
deployer.host.Host classes for each role.

	
getcwd()

	Calls getcwd() for every host and return the result as an array.

	
has_command(command, use_sudo=False)

	Test whether this command can be found in the bash shell, by executing a ‘which’

	
prefix(command)

	Call prefix() on the
HostContext of every host.

with host.prefix('workon environment'):
 host.run('./manage.py migrate')

	
run(command, sandbox=False, interactive=True, user=None, ignore_exit_status=False, initial_input=None)

	Call run() with this parameters on every
Host in this container. It can be executed
in parallel when we have multiple hosts.

	Returns:	An array of all the results.

	
sudo(command, sandbox=False, interactive=True, user=None, ignore_exit_status=False, initial_input=None)

	Call sudo() with this parameters on every
Host in this container. It can be executed
in parallel when we have multiple hosts.

	Returns:	An array of all the results.

	
class deployer.host_container.HostContainer(hosts, pty=None, logger=None, is_sandbox=False)

	Similar to HostsContainer, but wraps only
around exactly one Host.

	
exists(filename, use_sudo=True)

	Returns True when this file exists on the hosts.

	
get_file(*args, **kwargs)

	Download this remote_file.

	
getcwd()

	Calls getcwd() for every host and return the result as an array.

	
has_command(command, use_sudo=False)

	Test whether this command can be found in the bash shell, by executing
a which Returns True when the command exists.

	
open(*args, **kwargs)

	Open file handler to remote file. Can be used both as:

with host.open('/path/to/somefile', 'wb') as f:
 f.write('some content')

or:

host.open('/path/to/somefile', 'wb').write('some content')

	
put_file(*args, **kwargs)

	Upload this local_file to the remote location.

	
run(command, sandbox=False, interactive=True, user=None, ignore_exit_status=False, initial_input=None)

	Call run() with this parameters on every
Host in this container. It can be executed
in parallel when we have multiple hosts.

	Returns:	An array of all the results.

	
sudo(command, sandbox=False, interactive=True, user=None, ignore_exit_status=False, initial_input=None)

	Call sudo() with this parameters on every
Host in this container. It can be executed
in parallel when we have multiple hosts.

	Returns:	An array of all the results.

Groups

A Group can be attached to every Node, in order to put them in categories.

Typically, you have group names like alpha, beta and production.
The interactive shell will show the nodes in other colours, depending on the
group they’re in.

For instance.

from deployer.groups import production, staging

class N(Node):
 @production
 class Child(Node):
 pass

	
class deployer.groups.Group

	Group to which a node belongs.

	
color = None

	Colour for this service/action in the shell. Right now, only the colours
from the termcolor library are supported:

grey, red, green, yellow, blue, magenta, cyan, white

	
deployer.groups.set_group(group)

	Set the group for this node.

@set_group(Staging)
class MyNode(Node):
 pass

The Console object

The console object is an interface for user interaction from within a
Node. Among the input methods are choice lists, plain text input and password
input.

It has output methods that take the terminal size into account, like pagination
and multi-column display. It takes care of the pseudo terminal underneat.

Example:

class MyNode(Node):
 def do_something(self):
 if self.console.confirm('Should we really do this?', default=True):
 # Do it...
 pass

Note

When the script runs in a shell that was started with the
--non-interactive option, the default options will always be chosen
automatically.

	
class deployer.console.Console(pty)

	Interface for user interaction from within a Node.

	Parameters:	pty – deployer.pseudo_terminal.Pty instance.

	
choice(question, options, allow_random=False, default=None)

	

	Parameters:	
	options (list) – List of (name, value) tuples.

	allow_random (bool) – If True, the default option becomes ‘choose random’.

	
confirm(question, default=None)

	Print this yes/no question, and return True when the user answers
‘Yes’.

	
in_columns(item_iterator, margin_left=0)

	

	Parameters:	item_iterator – An iterable, which yields either basestring
instances, or (colored_item, length) tuples.

	
input(label, is_password=False, answers=None, default=None)

	Ask for plain text input. (Similar to raw_input.)

	Parameters:	
	is_password (bool) – Show stars instead of the actual user input.

	answers – A list of the accepted answers or None.

	default – Default answer.

	
is_interactive

	When False don’t ask for input and choose the default options when
possible.

	
lesspipe(line_iterator)

	Paginator for output. This will print one page at a time. When the user
presses a key, the next page is printed. Ctrl-c or q will quit
the paginator.

	Parameters:	line_iterator – A generator function that yields lines (without
trailing newline)

	
progress_bar(message, expected=None, clear_on_finish=False, format_str=None)

	Display a progress bar. This returns a Python context manager.
Call the next() method to increase the counter.

with console.progress_bar('Looking for nodes') as p:
 for i in range(0, 1000):
 p.next()
 ...

	Returns:	ProgressBar instance.

	Parameters:	message – Text label of the progress bar.

	
progress_bar_with_steps(message, steps, format_str=None)

	Display a progress bar with steps.

steps = ProgressBarSteps({
 1: "Resolving address",
 2: "Create transport",
 3: "Get remote key",
 4: "Authenticating" })

with console.progress_bar_with_steps('Connecting to SSH server', steps=steps) as p:
 ...
 p.set_progress(1)
 ...
 p.set_progress(2)
 ...

	Parameters:	
	steps – ProgressBarSteps instance.

	message – Text label of the progress bar.

	
pty

	The deployer.pseudo_terminal.Pty of this console.

	
select_node(root_node, prompt='Select a node', filter=None)

	Show autocompletion for node selection.

	
select_node_isolation(node)

	Ask for a host, from a list of hosts.

	
warning(text)

	Print a warning.

Inspection

The inspection module contains a set of utilities for introspection of the
deployment tree. This can be either from inside an action, or externally to
reflect on a given tree.

Suppose that we already have the following node instantiated:

from deployer.node import Node

class Setup(Node):
 def say_hello(self):
 self.hosts.run('echo "Hello world"')

setup = Setup()

Now we can ask for the list of actions that this node has:

from deployer.inspection import Inspector

insp = Inspector(setup)
print insp.get_actions()
print insp.get_childnodes()

Some usecases:

	Suppose that you have a huge deployment tree, covering dozens of projects,
each having both a staging and production set-up, and all of them are doing a
git checkout. Now you want to list all the current checkouts of all the
repositories on all your machines. This is easy by traversing the nodes, filtering
on the type gitnode and calling git show in there.

	Suppose you have an nginx node, which generates the configuration according
to the childnodes in there. One childnode could for instance define a
back-end, another one could define the location of static files, etc... By
using this inspection module, you cat find the childnodes that contain a
configuration section and combine these.

	Internally, the whole interactive shell is also using quite a lot of reflection.

Inspector

Reflexion/introspection on a deployer.node.Node

	
class deployer.inspection.inspector.PathType

	Types for displaying the Node address in a tree.
It’s an options for Inspector.get_path()

	
NAME_ONLY = 'NAME_ONLY'

	A list of names.

	
NODE_AND_NAME = 'NODE_AND_NAME'

	A list of (Node, name) tuples.

	
NODE_ONLY = 'NODE_ONLY'

	A list of nodes.

	
class deployer.inspection.inspector.Inspector(node)

	Introspection of a Node instance.

	
get_action(name)

	Return the Action with this name or raise AttributeError.

	
get_actions(include_private=True)

	Return a list of Action instances for the actions in this node.

	Parameters:	include_private (bool) – Include actions starting with an underscore.

	
get_childnode(name)

	Return the childnode with this name or raise AttributeError.

	
get_childnodes(include_private=True, verify_parent=True)

	Return a list of childnodes.

	Parameters:	
	include_private (bool) – ignore names starting with underscore.

	verify_parent (bool) – check that the parent matches the current node.

	
get_group()

	Return the deployer.groups.Group to which this node belongs.

	
get_name()

	Return the name of this node.

Note: when a node is nested in a parent node, the name becomes the
attribute name of this node in the parent.

	
get_parent()

	Return the parent Node or raise AttributeError.

	
get_path(path_type='NAME_ONLY')

	Return a (name1, name2, ...) tuple, defining the path from the root until here.

	Parameters:	path_type (PathType) – Path formatting.

	
get_properties(include_private=True)

	Return the attributes that are properties.

This are the members of this node that were wrapped in @property
:returns: A list of Action instances.

	
get_property(name)

	Returns the property with this name or raise AttributeError.
:returns: Action instance.

	
get_queries(include_private=True)

	Return the attributes that are deployer.query.Query instances.

	
get_query(name)

	Returns the Action object that wraps the Query with this name or raise
AttributeError.

	Returns:	An Action instance.

	
get_root()

	Return the root Node of the tree.

	
has_action(name)

	Returns True when this node has an action called name.

	
has_childnode(name)

	Returns True when this node has a childnode called name.

	
has_property(name)

	Returns True when the attribute name is a @property.

	
has_query(name)

	Returns True when the attribute name of this node is a Query.

	
is_callable()

	Return True when this node implements __call__.

	
suppress_result_for_action(name)

	True when deployer.node.suppress_action_result() has been applied to this action.

	
walk(filter=None)

	Recursively walk (topdown) through the nodes and yield them.

It does not split SimpleNodes nodes in several isolations.

	Parameters:	filter – A filters.Filter instance.

	Returns:	A NodeIterator instance.

Filters for NodeIterator

NodeIterator is the iterator that Inspector.walk() returns. It supports
filtering to limit the yielded nodes according to certain conditions.

A filter is a Filter instance or an AND or OR operation of several
filters. For instance:

from deployer.inspection.filters import HasAction, PublicOnly
Inspector(node).walk(HasAction('my_action') & PublicOnly & ~ InGroup(Staging))

	
class deployer.inspection.filters.Filter

	Base class for Inspector.walk filters.

	
deployer.inspection.filters.PublicOnly = PublicOnly

	Filter on public nodes.

	
deployer.inspection.filters.PrivateOnly = PrivateOnly

	Filter on private nodes.

	
class deployer.inspection.filters.IsInstance(node_class)

	Filter on the nodes which are an instance of this Node class.

	Parameters:	node_class – A deployer.node.Node subclass.

	
class deployer.inspection.filters.HasAction(action_name)

	Filter on the nodes which implement this action.

	
class deployer.inspection.filters.InGroup(group)

	Filter nodes that are in this group.

	Parameters:	group – A deployer.groups.Group subclass.

Query expressions

Queries provide syntactic sugar for expressions inside nodes.
For instance:

from deployer.query import Q

class MyNode(Node):
 do_something = True

 class MyChildNode(Node):
 do_something = Q.parent.do_something

 def setup(self):
 if self.do_something:
 ...
 pass

Technically, such a Query object uses the descriptor protocol. This way, it
acts like any python property, and is completely transparent. The
equivalent of Q.parent.do_something is:

@property
def do_something(self):
 return self.parent.do_something

More examples

A query can address the attribute of an inner node. When the property
attribute_of_a in the example below is retrieved, the query executes and
accesses the inner node A in the background.

class Root(Node):
 class A(Node):
 attribute = 'value'

 attribute_of_a = Q.A.attribute

 def action(self):
 if self.attribute_of_a == 'value':
 do_something(...)

A query can also call a function. The method get_url is called in the background.

class Root(Node):
 class A(Node):
 def get_url(self, domain):
 return 'http://%s' % domain

 url_of_a = Q.A.get_url('example.com')

 def print_url(self):
 print self.url_of_a

Note

Please make sure that a query can execute without side effects. This
means, that a query should never execute a command that changes
something on a host. Consider it read-only, like the getter of a
property.

(This is mainly a convension, but could result in unexpected results
otherwise.)

A query can even do complex calculations:

from deployer.query import Q

class Root(Node):
 class A(Node):
 length = 4
 width = 5

 # Multiply
 size = Q.A.length * Q.A.width

 # Operator priority
 size_2 = (Q.A.length + 1) * Q.A.width

 # String interpolation
 size_str = Q('The size is %s x %s') % (Q.A.height, Q.A.width)

Note

Python does not support overloading the and, or and not
operators. You should use the bitwise equivalents &, | and
~ instead.

Utils

String utilities

	
deployer.utils.string_utils.esc1(string)

	Escape single quotes, mainly for use in shell commands. Single quotes
are usually preferred above double quotes, because they never do shell
expension inside. e.g.

class HelloWorld(Node):
 def run(self):
 self.hosts.run("echo '%s'" % esc1("Here's some text"))

	
deployer.utils.string_utils.esc2(string)

	Escape double quotes

	
deployer.utils.string_utils.indent(string, prefix=' ')

	Indent every line of this string.

Other

	
deployer.utils.network.parse_ifconfig_output(output, only_active_interfaces=True)

	Parse the output of an ifconfig command.

	Returns:	A list of IfConfig objects.

Example usage:

ifconfig = parse_ifconfig_output(host.run('ifconfig'))
interface = ifconfig.get_interface('eth0')
print interface.ip

	
class deployer.utils.network.IfConfig

	Container for the network settings, found by ifconfig.
This contains a list of NetworkInterface.

	
get_address(ip)

	Return the NetworkInterface object, given an IP addres
(e.g. “127.0.0.1”) or raise AttributeError.

	
get_interface(name)

	Return the NetworkInterface object, given an interface name
(e.g. “eth0”) or raise AttributeError.

	
interfaces

	List of all NetworkInterface objects.

	
class deployer.utils.network.NetworkInterface(name='eth0')

	Information about a single network interface.

	
ip

	IP address of the network interface. e.g. “127.0.0.1”

	
name

	Name of the network interface. e.g. “eth0”.

Exceptions

	
exception deployer.exceptions.ActionException(inner_exception, traceback)

	When an action fails.

	
exception deployer.exceptions.ConnectionFailedException

	When connecting to an SSH host fails.

	
exception deployer.exceptions.DeployerException

	Base exception class.

	
exception deployer.exceptions.ExecCommandFailed(command, host, use_sudo, status_code, result=None)

	Execution of a run() or sudo() call on a host failed.

	
exception deployer.exceptions.QueryException(node, attr_name, query, inner_exception)

	Resolving of a Q object in a deployer Node failed.

pseudo_terminal

Note

This module is mainly for internal use.

Pty implements a terminal abstraction. This can be around the default stdin/out
pair, but also around a pseudo terminal that was created through the
openpty system call.

	
class deployer.pseudo_terminal.DummyPty(input_data='')

	Pty compatible object which insn’t attached to an interactive terminal, but
to dummy StringIO instead.

This is mainly for unit testing, normally you want to see the execution in
your terminal.

	
class deployer.pseudo_terminal.Pty(stdin=None, stdout=None, interactive=True, term_var='')

	Terminal abstraction around a stdin/stdout pair.

Contains helper function, for opening an additional Pty,
if parallel deployments are supported.

	Stdin:	The input stream. (sys.__stdin__ by default)

	Stdout:	The output stream. (sys.__stdout__ by default)

	Interactive:	When False, we should never ask for input during
the deployment. Choose default options when possible.

	
get_height()

	Return the height.

	
get_size()

	Get the size of this pseudo terminal.

	Returns:	A (rows, cols) tuple.

	
get_width()

	Return the width.

	
run_in_auxiliary_ptys(callbacks)

	For each callback, open an additional terminal, and call it with the
new ‘pty’ as parameter. The callback can potentially run in another
thread.

The default behaviour is not in parallel, but sequential.
Socket_server however, inherits this pty, and overrides this function
for parrallel execution.

	Parameters:	callbacks – A list of callables.

	
set_size(rows, cols)

	Set terminal size.

(This is also mainly for internal use. Setting the terminal size
automatically happens when the window resizes. However, sometimes the process
that created a pseudo terminal, and the process that’s attached to the output window
are not the same, e.g. in case of a telnet connection, or unix domain socket, and then
we have to sync the sizes by hand.)

	
stdin

	Return the input file object.

	
stdout

	Return the output file object.

	
deployer.pseudo_terminal.select(*args, **kwargs)

	Wrapper around select.select.

When the SIGWINCH signal is handled, other system calls, like select
are aborted in Python. This wrapper will retry the system call.

Internals

This page will try to give a high level overview of how the framework is
working. While the end-user of the framework won’t usually touch much more than
the Node and Host classes, there’s a lot more going on underneat.

There’s a lot of meta-programming, some domain specific languages, and a
mix of event-driven and blocking code.

Data flow

Roughly, this is the current flow from the interactive shell untill the actual
SSH client.

[image: digraph internals{ "Node" [style=filled, fillcolor=gold1]; "ParallelNode" [style=filled, fillcolor=gold1]; "Host" [style=filled, fillcolor=gold1]; "Host" [shape=box]; "HostContainer" [shape=box]; "HostsContainer" [shape=box]; "Node" [shape=box]; "ParallelNode" [shape=box]; "Env" [shape=box]; "HostContext" [shape=box]; "Host" -> "HostContext"; "Host" -> "Paramiko (SSH)"; "HostsContainer" -> "Host"; "HostContainer" -> "Host"; "HostsContainer" -> "HostContext"; "HostContainer" -> "HostContext"; "Node" -> "HostsContainer"; "ParallelNode" -> "HostsContainer"; "ParallelNode" -> "HostContainer"; "Env" -> "Node"; "Env" -> "ParallelNode"; "Interactive shell" -> "Env"; }]
The yellow classes – Node,
ParallelNode and Host – are the ones which an average end-user of this
framework will use. He will inherit from there to define his deployment script.

HostContainer (singular and
plural) and Env are proxy classes. They are
created by the framework, but passed to the user’s code at some points.

Paramiko, at the lowest level, is responsible for the SSH connection. The
Host class takes care of calling Paramiko, the end-user should not directly
depend on Paramiko. In the future, we may replace it with for instance
twisted.conch.

At the top level, we usually have the interactive shell. But if a deployment
script is called as a library, it can have any other front-end. The built-in
interactive shell also has a telnet server (remote shell) and a shell which has
some multithreaded execution model (parallel deployment). These are realized
through Twisted Matrix, and there’s some event-driven code touching the
iterative blocking code.

About

Special thanks to

This framework depends on two major libraries: Paramiko [https://github.com/paramiko/paramiko] and Twisted Matrix [http://twistedmatrix.com/].
A small amount of code was also inspired by Fabric [http://docs.fabfile.org/]. Also thanks for all the
useful input from all the people I met.

Authors

	Jonathan Slenders (VikingCo, Mobile Vikings)

	Jan Fabry (VikingCo, Mobile Vikings)

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 deployer	

 	
 	
 deployer.console	

 	
 	
 deployer.exceptions	

 	
 	
 deployer.groups	

 	
 	
 deployer.host	

 	
 	
 deployer.host.base	

 	
 	
 deployer.host.local	

 	
 	
 deployer.host.ssh	

 	
 	
 deployer.inspection	

 	
 	
 deployer.inspection.filters	

 	
 	
 deployer.inspection.inspector	

 	
 	
 deployer.node.base	

 	
 	
 deployer.node.decorators	

 	
 	
 deployer.node.role_mapping	

 	
 	
 deployer.pseudo_terminal	

 	
 	
 deployer.utils.network	

 	
 	
 deployer.utils.string_utils	

Index

 A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | W

A

 	
 	Action (class in deployer.node.base)

 	ActionException

 	
 	address (deployer.host.ssh.SSHHost attribute)

 	alias() (in module deployer.node.decorators)

 	ALL_HOSTS (in module deployer.node.role_mapping)

C

 	
 	cd() (deployer.host.base.HostContext method)

 	(deployer.host_container.HostsContainer method)

 	choice() (deployer.console.Console method)

 	color (deployer.groups.Group attribute)

 	config_filename (deployer.host.ssh.SSHHost attribute)

 	
 	confirm() (deployer.console.Console method)

 	ConnectionFailedException

 	Console (class in deployer.console)

 	console (deployer.node.base.Env attribute)

 	copy() (deployer.host.base.Host method)

 	(deployer.host.base.HostContext method)

D

 	
 	default_from_node() (deployer.node.base.Env class method)

 	DefaultRoleMapping (class in deployer.node.role_mapping)

 	deployer.console (module)

 	deployer.exceptions (module)

 	deployer.groups (module)

 	deployer.host (module)

 	deployer.host.base (module)

 	deployer.host.local (module)

 	deployer.host.ssh (module)

 	deployer.inspection (module)

 	
 	deployer.inspection.filters (module)

 	deployer.inspection.inspector (module)

 	deployer.node.base (module)

 	deployer.node.decorators (module)

 	deployer.node.role_mapping (module)

 	deployer.pseudo_terminal (module)

 	deployer.utils.network (module)

 	deployer.utils.string_utils (module)

 	DeployerException

 	dont_isolate_yet() (in module deployer.node.decorators)

 	DummyPty (class in deployer.pseudo_terminal)

E

 	
 	Env (class in deployer.node.base)

 	env() (deployer.host.base.HostContext method)

 	(deployer.host_container.HostsContainer method)

 	EnvAction (class in deployer.node.base)

 	esc1() (in module deployer.utils.string_utils)

 	
 	esc2() (in module deployer.utils.string_utils)

 	ExecCommandFailed

 	exists() (deployer.host.base.Host method)

 	(deployer.host_container.HostContainer method)

 	(deployer.host_container.HostsContainer method)

F

 	
 	Filter (class in deployer.inspection.filters)

 	
 	filter() (deployer.host_container.HostsContainer method)

 	from_definition() (deployer.host_container.HostsContainer class method)

G

 	
 	get_action() (deployer.inspection.inspector.Inspector method)

 	get_actions() (deployer.inspection.inspector.Inspector method)

 	get_address() (deployer.utils.network.IfConfig method)

 	get_childnode() (deployer.inspection.inspector.Inspector method)

 	get_childnodes() (deployer.inspection.inspector.Inspector method)

 	get_file() (deployer.host.base.Host method)

 	(deployer.host_container.HostContainer method)

 	get_group() (deployer.inspection.inspector.Inspector method)

 	get_height() (deployer.pseudo_terminal.Pty method)

 	get_hosts() (deployer.host_container.HostsContainer method)

 	get_hosts_as_dict() (deployer.host_container.HostsContainer method)

 	get_interface() (deployer.utils.network.IfConfig method)

 	get_ip_address() (deployer.host.base.Host method)

 	get_name() (deployer.inspection.inspector.Inspector method)

 	
 	get_parent() (deployer.inspection.inspector.Inspector method)

 	get_path() (deployer.inspection.inspector.Inspector method)

 	get_properties() (deployer.inspection.inspector.Inspector method)

 	get_property() (deployer.inspection.inspector.Inspector method)

 	get_queries() (deployer.inspection.inspector.Inspector method)

 	get_query() (deployer.inspection.inspector.Inspector method)

 	get_root() (deployer.inspection.inspector.Inspector method)

 	get_size() (deployer.pseudo_terminal.Pty method)

 	get_start_path() (deployer.host.base.Host method)

 	(deployer.host.ssh.SSHHost method)

 	get_width() (deployer.pseudo_terminal.Pty method)

 	getcwd() (deployer.host.base.Host method)

 	(deployer.host_container.HostContainer method)

 	(deployer.host_container.HostsContainer method)

 	Group (class in deployer.groups)

H

 	
 	has_action() (deployer.inspection.inspector.Inspector method)

 	has_childnode() (deployer.inspection.inspector.Inspector method)

 	has_command() (deployer.host_container.HostContainer method)

 	(deployer.host_container.HostsContainer method)

 	has_property() (deployer.inspection.inspector.Inspector method)

 	has_query() (deployer.inspection.inspector.Inspector method)

 	HasAction (class in deployer.inspection.filters)

 	Host (class in deployer.host.base)

 	
 	host (deployer.node.base.ParallelNode attribute)

 	HOST_TUPLES (deployer.node.base.IsolationIdentifierType attribute)

 	HostContainer (class in deployer.host_container)

 	HostContext (class in deployer.host.base)

 	hosts (deployer.node.base.Env attribute)

 	Hosts (deployer.node.base.Node attribute)

 	HOSTS_SLUG (deployer.node.base.IsolationIdentifierType attribute)

 	HostsContainer (class in deployer.host_container)

I

 	
 	IfConfig (class in deployer.utils.network)

 	ifconfig() (deployer.host.base.Host method)

 	in_columns() (deployer.console.Console method)

 	indent() (in module deployer.utils.string_utils)

 	InGroup (class in deployer.inspection.filters)

 	initialize_node() (deployer.node.base.Env method)

 	input() (deployer.console.Console method)

 	Inspector (class in deployer.inspection.inspector)

 	INT_TUPLES (deployer.node.base.IsolationIdentifierType attribute)

 	
 	interfaces (deployer.utils.network.IfConfig attribute)

 	ip (deployer.utils.network.NetworkInterface attribute)

 	is_callable() (deployer.inspection.inspector.Inspector method)

 	is_dir (deployer.host.base.Stat attribute)

 	is_file (deployer.host.base.Stat attribute)

 	is_interactive (deployer.console.Console attribute)

 	IsInstance (class in deployer.inspection.filters)

 	isolate_one_only() (in module deployer.node.decorators)

 	IsolationIdentifierType (class in deployer.node.base)

 	iter_isolations() (in module deployer.node.base)

K

 	
 	keepalive_interval (deployer.host.ssh.SSHHost attribute)

 	
 	key_filename (deployer.host.ssh.SSHHost attribute)

L

 	
 	lesspipe() (deployer.console.Console method)

 	listdir_stat() (deployer.host.base.Host method)

 	(deployer.host.local.LocalHost method)

 	(deployer.host.ssh.SSHHost method)

 	
 	LocalHost (class in deployer.host.local)

M

 	
 	map_roles (in module deployer.node.role_mapping)

N

 	
 	name (deployer.utils.network.NetworkInterface attribute)

 	NAME_ONLY (deployer.inspection.inspector.PathType attribute)

 	NetworkInterface (class in deployer.utils.network)

 	
 	Node (class in deployer.node.base)

 	NODE_AND_NAME (deployer.inspection.inspector.PathType attribute)

 	NODE_ONLY (deployer.inspection.inspector.PathType attribute)

 	NodeBase (class in deployer.node.base)

O

 	
 	open() (deployer.host.base.Host method)

 	(deployer.host_container.HostContainer method)

P

 	
 	ParallelActionResult (class in deployer.node.base)

 	ParallelNode (class in deployer.node.base)

 	parent (deployer.node.base.Node attribute)

 	parse_ifconfig_output() (in module deployer.utils.network)

 	password (deployer.host.base.Host attribute)

 	PathType (class in deployer.inspection.inspector)

 	port (deployer.host.ssh.SSHHost attribute)

 	prefix() (deployer.host.base.HostContext method)

 	(deployer.host_container.HostsContainer method)

 	
 	PrivateOnly (in module deployer.inspection.filters)

 	progress_bar() (deployer.console.Console method)

 	progress_bar_with_steps() (deployer.console.Console method)

 	Pty (class in deployer.pseudo_terminal)

 	pty (deployer.console.Console attribute)

 	PublicOnly (in module deployer.inspection.filters)

 	put_file() (deployer.host.base.Host method)

 	(deployer.host_container.HostContainer method)

Q

 	
 	QueryException

R

 	
 	required_property (class in deployer.node.base)

 	rsa_key (deployer.host.ssh.SSHHost attribute)

 	rsa_key_password (deployer.host.ssh.SSHHost attribute)

 	
 	run() (deployer.host.base.Host method)

 	(deployer.host_container.HostContainer method)

 	(deployer.host_container.HostsContainer method)

 	run_in_auxiliary_ptys() (deployer.pseudo_terminal.Pty method)

S

 	
 	select() (in module deployer.pseudo_terminal)

 	select_node() (deployer.console.Console method)

 	select_node_isolation() (deployer.console.Console method)

 	set_group() (in module deployer.groups)

 	set_size() (deployer.pseudo_terminal.Pty method)

 	SimpleNode (in module deployer.node.base)

 	SimpleNodeBase (in module deployer.node.base)

 	slug (deployer.host.base.Host attribute)

 	SSHHost (class in deployer.host.ssh)

 	st_gid (deployer.host.base.Stat attribute)

 	st_size (deployer.host.base.Stat attribute)

 	
 	st_uid (deployer.host.base.Stat attribute)

 	start_interactive_shell() (deployer.host.base.Host method)

 	(deployer.host.local.LocalHost method)

 	(deployer.host.ssh.SSHHost method)

 	Stat (class in deployer.host.base)

 	stdin (deployer.pseudo_terminal.Pty attribute)

 	stdout (deployer.pseudo_terminal.Pty attribute)

 	sudo() (deployer.host.base.Host method)

 	(deployer.host_container.HostContainer method)

 	(deployer.host_container.HostsContainer method)

 	suppress_action_result() (in module deployer.node.decorators)

 	suppress_result_for_action() (deployer.inspection.inspector.Inspector method)

T

 	
 	timeout (deployer.host.ssh.SSHHost attribute)

U

 	
 	username (deployer.host.base.Host attribute)

 	(deployer.host.ssh.SSHHost attribute)

W

 	
 	walk() (deployer.inspection.inspector.Inspector method)

 	
 	warning() (deployer.console.Console method)

 _static/comment.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/file.png

_static/plus.png

_static/up-pressed.png

_static/down.png

_static/up.png

_images/graphviz-dff0ee1e8e73185cbcbe252dd13ec06e59968d69.png
Local

Testing

nav.xhtml

 Table of Contents

 		Python-deploy-framework

 		Tutorial: Hello world

 		Install requirements

 		Creating nodes

 		Linking the node to actual hosts

 		Starting an interactive shell

 		Remote SSH Hosts

 		Complete example

 		Where to go now?

 		Tutorial: Deploying a (Django) application

 		Using python-deployer

 		Writing the deployment script

 		Git checkout

 		Defining the SSH host

 		Configuration management

 		Managing the virtualenv

 		Running Django management commands

 		Running gunicorn through supervisord

 		Making stuff reusable

 		A reusable virtualenv class.

 		Reusable git class

 		Our reusable DjangoDeployment

 		Adding hosts

 		And now?

 		Architecture of roles and nodes

 		Use cases

 		Creating nodes

 		More complete example

 		The interactive shell

 		Navigation

 		Running node actions

 		Special commands

 		The SCP (secure copy) shell

 		The node object

 		Running the code

 		Inheritance

 		Expansion of double underscores

 		The importance of ParallelNode

 		Isolation of hosts in ParallelNode.

 		.Array and .JustOne

 		Using contrib.nodes

 		Reference

 		Node reference

 		Decorators

 		Role mapping

 		Host

 		Base classes

 		Localhost

 		SSH Host

 		host_container

 		Reference

 		Groups

 		The Console object

 		Inspection

 		Inspector

 		Filters for NodeIterator

 		Query expressions

 		More examples

 		Utils

 		String utilities

 		Other

 		Exceptions

 		pseudo_terminal

 		Internals

 		Data flow

 		About

 		Special thanks to

 		Authors

_images/graphviz-485f4b82438fcb84154b9be49512f285c84f5a01.png
Staging

_images/graphviz-98f88c62da619cb8f914420be1531bbab300a00e.png

_images/graphviz-381b63b83efe0c5317621c94b0b2e7743122e810.png

_images/graphviz-d582b64e0c17d3afb3ed2b3d917065cc14b2f031.png
HostsContainer HostContainer

HostContext

_static/comment-bright.png

_static/comment-close.png

_static/minus.png

