

Python-deploy-framework

A Python framework for automatic deployment and remote execution on Posix
systems.

	Index

	Module Index

	Search Page

Important key features are:

	Interactive execution of remote commands.

	Fast parallel execution.

	Reusability of all deployment code.

Table of content

	Getting started
	Hello world
	Creating nodes

	Starting an interactive shell

	Remote SSH Hosts

	The Console object

	Exceptions

	The interactive shell
	Navigation

	Special commands

	Implementing a custom shell

	Groups

	host_container
	Reference

	Inspection
	Filters for NodeIterator

	The node object
	Running the code

	Inheritance
	Expansion of double underscores

	The difference between Node and SimpleNode
	.Array and .JustOne

	Using contrib.nodes

	Reference

	pseudo_terminal

	The query object
	More examples

	Reference

	Utils
	String utilities

	Other

	About
	Special thanks to

	Authors

Getting started

Install the framework as follows:

pip install deployer

Hello world

Creating nodes

As a quick example, we create a simple node, which does nothing, except
printing ‘hello world’, by executing an echo command.

from deployer.node import SimpleNode

class SayHello(SimpleNode):
 def hello(self):
 self.host.run('echo hello world')

When SayHello.hello is called in the example above, it will run the echo
command on all the hosts that are known in this Node.

Now we need to define on which hosts this node should run. Let’s use Python
class inheritance for this.

from deployer.host import LocalHost

class SayHelloOnLocalHost(SayHello):
 class Hosts:
 host = LocalHost

Starting an interactive shell

Add the following to your Python file, and save it as deployment.py.

if __name__ == '__main__':
 from deployer.client import start
 start(SayHelloOnLocalHost)

If you call it like below, you get a nice interactive shell with tab-completion
from where you can run the hello command.

python deployment.py run

Remote SSH Hosts

Instead of using LocalHost, you can also run the code on an SSH host.

from deployer.host import SSHHost

class MyRemoteHost(SSHHost):
 slug = 'my-host'
 address = '192.168.0.200'
 username = 'john'
 password = '...'

class RemoteHello(SayHello):
 class Hosts:
 host = MyRemoteHost

If is even possible to put several instances of the SayHello node in your
deployment tree, for instance, where one instance is local and the other is
remote.

The Console object

The console object is an interface for user interaction from within a
Node. Among the input methods are choice lists, plain text input and password
input.

It has output methods that take the terminal size into account, like pagination
and multi-column display. It takes care of the pseudo terminal underneat.

Example:

class MyNode(Node):
 def do_something(self):
 if self.console.confirm('Should we really do this?', default=True):
 # Do it...
 pass

Note

When the script runs in a shell that was started with the
--non-interactive option, the default options will always be chosen
automatically.

	
class deployer.console.Console(pty)

	Interface for user interaction from within a Node.

	
choice(question, options, allow_random=False, default=None)

	

	Parameters:	
	options (list) – List of (name, value) tuples.

	allow_random (bool) – If True, the default option becomes ‘choose random’.

	
confirm(question, default=None)

	Print this yes/no question, and return True when the user answers
‘Yes’.

	
in_columns(item_iterator, margin_left=0)

	

	Parameters:	item_iterator – An iterable, which yields either basestring
instances, or (colored_item, length) tuples.

	
input(label, is_password=False, answers=None, default=None)

	Ask for plain text input. (Similar to raw_input.)

	Parameters:	
	is_password (bool) – Show stars instead of the actual user input.

	answers – A list of the accepted answers or None.

	default – Default answer.

	
lesspipe(line_iterator)

	Paginator for output. This will print one page at a time. When the user
presses a key, the next page is printed. Ctrl-c or q will quit
the paginator.

	Parameters:	line_iterator – A generator function that yields lines (without
trailing newline)

	
select_node(root_node, prompt='Select a node', filter=None)

	Show autocompletion for node selection.

	
select_node_isolation(node)

	Ask for a host, from a list of hosts.

	
deployer.console.warning(text)

	Print a warning.

Exceptions

	
exception deployer.exceptions.ActionException(inner_exception, traceback)

	When an action fails.

	
exception deployer.exceptions.DeployerException

	Base exception class.

	
exception deployer.exceptions.ExecCommandFailed(command, host, use_sudo, status_code, result=None)

	Execution of a run() or sudo() call on a host failed.

	
exception deployer.exceptions.QueryException(node, attr_name, query, inner_exception)

	Resolving of a Q object in a deployer Node failed.

The interactive shell

Creating an interactive shell from a node tree.

if __name__ == '__main__':
 from deployer.client import start
 start(MyRootNode)

Navigation

Navigation: TODO

Special commands

Special commands: –inspect, –query, ...

Implementing a custom shell

TODO

Groups

A Group can be attached to every Node, in order to put them in categories.

Typically, you have group names like alpha, beta and production.
The interactive shell will show the nodes in other colours, depending on the
group they’re in.

For instance.

from deployer.groups import production, staging

class N(Node):
 @production
 class Child(Node):
 pass

	
class deployer.groups.Group

	Group to which a node belongs.

	
deployer.groups.set_group(group)

	Set the group for this node.

@set_group(Staging)
class MyNode(Node):
 pass

host_container

Access to hosts from within a Node class happens through a
HostsContainer proxy. This container object has also methods for reducing
the amount of hosts on which commands are executed, by filtering according to
conditions.

The hosts property of a node instance returns such a HostsContainer
object.

class MyNode(Node):
 class Hosts:
 web_servers = [Host1, Host2]
 caching_servers = Host3

 def do_something(self):
 # self.hosts here, is a HostsContainer instance.
 self.hosts.filter('caching_servers').run('echo hello')

Reference

	
class deployer.host_container.HostContainer(hosts, pty=None, logger=None, is_sandbox=False, host_contexts=None)

	Similar to hostsContainer, but wraps only around exactly one host.

	
exists(*a, **kw)

	Returns True when this file exists on the hosts.

	
get(*args, **kwargs)

	Download this remote_file.

	
has_command(*a, **kw)

	Test whether this command can be found in the bash shell, by executing a ‘which’

	
open(*args, **kwargs)

	Open file handler to remote file. Can be used both as:

with host.open('/path/to/somefile', wb') as f:
 f.write('some content')

or:

host.open('/path/to/somefile', wb').write('some content')

	
put(*args, **kwargs)

	Upload this local_file to the remote location.

	
run(*a, **kw)

	Execute this shell command on the host.

	Parameters:	
	pty (deployer.pseudo_terminal.Pty) – The pseudo terminal wrapper which handles the stdin/stdout.

	command (basestring) – The shell command.

	use_sudo (bool) – Run as superuser.

	sandbox (bool) – Validate syntax instead of really executing. (Wrap the command in bash -n.)

	interactive (bool) – Start an interactive event loop which allows
interaction with the remote command. Otherwise, just return the output.

	logger (LoggerInterface) – The logger interface.

	initial_input (basestring) – When interactive, send this input first to the host.

	context (:class:`deployer.host.HostContext;) –

	
sudo(*a, **kw)

	Run this command using sudo.

	
class deployer.host_container.HostsContainer(hosts, pty=None, logger=None, is_sandbox=False, host_contexts=None)

	Facade to the host instances.
if you have a role, name ‘www’ inside the service webserver, you can do:

	webserver.hosts.run(...)

	webserver.hosts.www.run(...)

	webserver.hosts[0].run(...)

	webserver.hosts.www[0].run(...)

	webserver.hosts.filter(‘www’)[0].run(...)

The host container also keeps track of HostStatus. So, if we fork a new
thread, and the HostStatus object gets modified in either thread. Clone
this HostsContainer first.

	
cd(*a, **kw)

	Execute commands in this directory.
Nesting of cd-statements is allowed.

with host.cd('~/directory'):
 host.run('ls')

	
env(*a, **kw)

	Set this environment variable

	
exists(filename, use_sudo=True)

	Returns True when this file exists on the hosts.

	
filter(*roles)

	Examples:

hosts.filter('role1', 'role2')
hosts.filter('*') # Returns everything
hosts.filter(['role1', 'role2']) # TODO: deprecate
host.filter('role1', MyHostClass) # This means: take 'role1' from this container, but add an instance of this class

	
classmethod from_definition(hosts_class, **kw)

	Create a HostContainer from a Hosts class.

	
get(*roles)

	Similar to filter(), but returns exactly one host instead of a list.

	
has_command(command, use_sudo=False)

	Test whether this command can be found in the bash shell, by executing a ‘which’

	
prefix(*a, **kw)

	Prefix all commands with given command plus &&.

with host.prefix('workon environment'):
 host.run('./manage.py migrate')

	
run(*a, **kw)

	Execute this shell command on the host.

	Parameters:	
	pty (deployer.pseudo_terminal.Pty) – The pseudo terminal wrapper which handles the stdin/stdout.

	command (basestring) – The shell command.

	use_sudo (bool) – Run as superuser.

	sandbox (bool) – Validate syntax instead of really executing. (Wrap the command in bash -n.)

	interactive (bool) – Start an interactive event loop which allows
interaction with the remote command. Otherwise, just return the output.

	logger (LoggerInterface) – The logger interface.

	initial_input (basestring) – When interactive, send this input first to the host.

	context (:class:`deployer.host.HostContext;) –

	
sudo(*args, **kwargs)

	Run this command using sudo.

Inspection

The inspection module contains a set of utilities for introspection of the
deployment tree. This can be either from inside an action, or externally to
reflect on a given tree.

Suppose that we already have the following node instantiated:

from deployer.node import Node

class Setup(Node):
 def say_hello(self):
 self.hosts.run('echo "Hello world"')

setup = Setup()

Now we can ask for the list of actions that this node has:

from deployer.inspection import Inspector

insp = Inspector(setup)
print insp.get_actions()
print insp.get_childnodes()

	
class deployer.inspection.inspector.Inspector(node)

	Introspection of a Node instance.

	
get_action(name)

	Return the Action with this name or raise AttributeError.

	
get_actions(include_private=True)

	Return a list of Action instances for the actions in this node.

	Parameters:	include_private (bool) – Include actions starting with an underscore.

	
get_childnode(name)

	Return the childnode with this name or raise AttributeError.

	
get_childnodes(include_private=True, verify_parent=True)

	Return a list of childnodes.

	Parameters:	
	include_private (bool) – ignore names starting with underscore.

	verify_parent (bool) – check that the parent matches the current node.

	
get_group()

	Return the deployer.groups.Group to which this node belongs.

	
get_name()

	Return the name of this node.

Note: when a node is nested in a parent node, the name becomes the
attribute name of this node in the parent.

	
get_parent()

	Return the parent Node or raise AttributeError.

	
get_path(path_type='NAME_ONLY')

	Return a (name1, name2, ...) tuple, defining the path from the root until here.

	Parameters:	path_type (PathType) – Path formatting.

	
get_properties(include_private=True)

	Return the attributes that are properties.

This are the members of this node that were wrapped in @property
:returns: A list of Action instances.

	
get_property(name)

	Returns the property with this name or raise AttributeError.
:returns: Action instance.

	
get_queries(include_private=True)

	Return the attributes that are deployer.query.Query instances.

	
get_query(name)

	Returns the Action object that wraps the Query with this name or raise
AttributeError.

	Returns:	An Action instance.

	
get_root()

	Return the root Node of the tree.

	
has_action(name)

	Returns True when this node has an action called name.

	
has_childnode(name)

	Returns True when this node has a childnode called name.

	
has_property(name)

	Returns True when the attribute name is a @property.

	
has_query(name)

	Returns True when the attribute name of this node is a Query.

	
is_callable()

	Return True when this node implements __call__.

	
suppress_result_for_action(name)

	True when deployer.node.suppress_action_result() has been applied to this action.

	
walk(filter=None)

	Recursively walk (topdown) through the nodes and yield them.

It does not split SimpleNodes nodes in several isolations.

	Parameters:	filter – A filters.Filter instance.

	Returns:	A NodeIterator instance.

	
class deployer.inspection.inspector.NodeIterator(node_iterator_func)

	Generator object which yields the nodes in a collection.

	
call_action(name, *a, **kw)

	Call a certain action on all the nodes.

	
filter(filter)

	Apply filter on this node iterator, and return a new iterator instead.
filter should be a Filter instance.

	
prefer_isolation(index)

	For nodes that are not yet isoleted. (SimpleNodes, or normal Nodes
nested in there.) yield the isolations with this index. Otherwise,
nodes are yielded unmodified.

	
class deployer.inspection.inspector.PathType

	Types for displaying the Node address in a tree.
It’s an options for Inspector.get_path()

	
NAME_ONLY = 'NAME_ONLY'

	A list of names.

	
NODE_AND_NAME = 'NODE_AND_NAME'

	A list of (Node, name) tuples.

	
NODE_ONLY = 'NODE_ONLY'

	A list of nodes.

Filters for NodeIterator

NodeIterator is the iterator that Inspector.walk() returns. It supports
filtering to limit the yielded nodes according to certain conditions.

A filter is a Filter instance or an AND or OR operation of several
filters. For instance:

from deployer.inspection.filters import HasAction, PublicOnly
Inspector(node).walk(HasAction('my_action') & PublicOnly & ~ InGroup(Staging))

	
class deployer.inspection.filters.Filter

	Base class for Inspector.walk filters.

	
deployer.inspection.filters.PublicOnly = PublicOnly

	Filter on public nodes.

	
deployer.inspection.filters.PrivateOnly = PrivateOnly

	Filter on private nodes.

	
class deployer.inspection.filters.IsInstance(node_class)

	Filter on the nodes which are an instance of this Node class.

	Parameters:	node_class – A deployer.node.Node subclass.

	
class deployer.inspection.filters.HasAction(action_name)

	Filter on the nodes which implement this action.

	
class deployer.inspection.filters.InGroup(group)

	Filter nodes that are in this group.

	Parameters:	group – A deployer.groups.Group subclass.

The node object

TODO: examples and documentation.

from deployer.node import SimpleNode

class SayHello(SimpleNode):
 def hello(self):
 self.host.run('echo hello world')

Note

It is interesting to know that self is actually not a Node instance,
but an Env object which will proxy this actual Node class. This is
because there is some metaclass magic going on, which takes care of sandboxing,
logging and some other nice stuff, that you get for free.

Except that a few other variables like self.console are available,
you normally won’t notice anything.

Running the code

from deployer.node import Env

env = Env(MyNode())
env.hello()

Inheritance

A node is meant to be reusable. It is encouraged to inherit from such a node
class and overwrite properties or class members.

Expansion of double underscores

TODO: ...

The difference between Node and SimpleNode

TODO: ...

.Array and .JustOne

TODO: ...

Using contrib.nodes

The deployer framework is delivered with a contrib.nodes directory which
contains nodes that should be generic enough to be usable by a lot of people.
Even if you can’t use them in your case, they may be good examples of how to do
certain things. So don’t be afraid to look at the source code, you can learn some
good practices there. Take these and inherit as you want to, or start from
scratch if you prefer that way.

Some recommended contrib nodes:

	deployer.contrib.nodes.config.Config

This a the base class that we are using for every configuration file. It is
very useful for when you are automatically generating server configurations
according to specific deployment configurations. Without any efford, this
class will allow you to do diff’s between your new, generated config, and
the config that’s currently on the server side.

Reference

	
class deployer.node.Env(node, pty=None, logger=None, is_sandbox=False)

	Wraps a Node into a context where actions can be executed.

Instead of self, the first parameter of a Node-action will be this
instance. It acts like a proxy to the Node, but in the meantime it
takes care of logging, sandboxing, the terminal and context.

	
console

	Interface for user input. Returns a deployer.console.Console instance.

	
hosts

	deployer.host_container.HostsContainer instance. This is the proxy to the actual hosts.

	
initialize_node(node_class)

	Dynamically initialize a node from within another node.
This will make sure that the node class is initialized with the
correct logger, sandbox and pty settings. e.g:

	Parameters:	node_class – A Node subclass.

class SomeNode(Node):
 def action(self):
 pass

class RootNode(Node):
 def action(self):
 # Wrap SomeNode into an Env object
 node = self.initialize_node(SomeNode)

 # Use the node.
 node.action2()

	
class deployer.node.Node(parent=None)

	This is the base class for any deployment node.

	
class deployer.node.SimpleNode(parent=None)

	A SimpleNode is a Node which has only one role, named host.
Multiple hosts can be given for this role, but all of them will be isolated,
during execution. This allows parallel executing of functions on each ‘cell’.

	
deployer.node.suppress_action_result(action)

	When using a deployment shell, don’t print the returned result to stdout.
For example, when the result is superfluous to be printed, because the
action itself contains already print statements, while the result
can be useful for the caller.

	
deployer.node.dont_isolate_yet(func)

	If the node has not yet been separated in serveral parallel, isolated
nodes per host. Don’t do it yet for this function.
When anothor action of the same host without this decorator is called,
the node will be split.

It’s for instance useful for reading input, which is similar for all
isolated executions, (like asking which Git Checkout has to be taken),
before forking all the threads.

Note that this will not guarantee that a node will not be split into
its isolations, it does only say, that it does not have to. It is was
already been split before, and this is called from a certain isolation,
we’ll keep it like that.

	
deployer.node.alias(name)

	Give this node action an alias. It will also be accessable using that
name in the deployment shell. This is useful, when you want to have special
characters which are not allowed in Python function names, like dots, in
the name of an action.

pseudo_terminal

Note

This module is mainly for internal use.

Pty implements a terminal abstraction. This can be around the default stdin/out
pair, but also around a pseudo terminal that was created through the
openpty system call.

	
class deployer.pseudo_terminal.DummyPty(input_data='')

	Pty compatible object which insn’t attached to an interactive terminal, but
to dummy StringIO instead.

This is mainly for unit testing, normally you want to see the execution in
your terminal.

	
class deployer.pseudo_terminal.Pty(stdin=None, stdout=None, interactive=True)

	Terminal abstraction around a stdin/stdout pair.

Contains helper function, for opening an additional Pty,
if parallel deployments are supported.

	Stdin:	The input stream. (sys.__stdin__ by default)

	Stdout:	The output stream. (sys.__stdout__ by default)

	Interactive:	When False, we should never ask for input during
the deployment. Choose default options when possible.

	
get_height()

	Return the height.

	
get_size()

	Get the size of this pseudo terminal.

	Returns:	A (rows, cols) tuple.

	
get_width()

	Return the width.

	
run_in_auxiliary_ptys(callbacks)

	For each callback, open an additional terminal, and call it with the
new ‘pty’ as parameter. The callback can potentially run in another
thread.

The default behaviour is not in parallel, but sequential.
Socket_server however, inherits this pty, and overrides this function
for parrallel execution.

	Parameters:	callbacks – A list of callables.

	
set_size(rows, cols)

	Set terminal size.

(This is also mainly for internal use. Setting the terminal size
automatically happens when the window resizes. However, sometimes the process
that created a pseudo terminal, and the process that’s attached to the output window
are not the same, e.g. in case of a telnet connection, or unix domain socket, and then
we have to sync the sizes by hand.)

	
deployer.pseudo_terminal.select(*args, **kwargs)

	Wrapper around select.select.

When the SIGWINCH signal is handled, other system calls, like select
are aborted in Python. This wrapper will retry the system call.

The query object

Queries provide syntactic sugar for expressions inside nodes.
For instance:

from deployer.query import Q

class MyNode(Node):
 do_something = True

 class MyChildNode(Node):
 do_something = Q.parent.do_something

 def setup(self):
 if self.do_something:
 ...
 pass

Technically, such a Query object uses the descriptor protocol. This way, it
acts like any python property, and is completely transparent.

More examples

A query can address the attribute of an inner node. When the property
attribute_of_a in the example below is retrieved, the query executes and
accesses the inner node A in the background.

class Root(Node):
 class A(Node):
 attribute = 'value'

 attribute_of_a = Q.A.attribute

 def action(self):
 if self.attribute_of_a == 'value':
 do_something(...)

A query can also call a function. The method get_url is called in the background.

class Root(Node):
 class A(Node):
 def get_url(self, domain):
 return 'http://%s' % domain

 url_of_a = Q.A.get_url('example.com')

 def print_url(self):
 print self.url_of_a

Note

Please make sure that a query can execute without side effects. This
means, that a query should never execute a command that changes
something on a host. Consider it read-only, like the getter of a
property.

(This is mainly a convension, but could result in unexpected results
otherwise.)

A query can even do complex calculations:

from deployer.query import Q

class Root(Node):
 class A(Node):
 length = 4
 width = 5

 # Multiply
 size = Q.A.length * Q.A.width

 # Operator priority
 size_2 = (Q.A.length + 1) * Q.A.width

 # String interpolation
 size_str = Q('The size is %s x %s') % (Q.A.height, Q.A.width)

Note

Python does not support overloading the and, or and not
operators. You should use the bitwise equivalents &, | and
~ instead.

Reference

TODO: implemented operators

TODO: implemented special methods: __getitem__,

Utils

String utilities

	
deployer.utils.string_utils.esc1(string)

	Escape single quotes, mainly for use in shell commands. Single quotes
are usually preferred above double quotes, because they never do shell
expension inside. e.g.

class HelloWorld(Node):
 def run(self):
 self.hosts.run("echo '%s'" % esc1("Here's some text"))

	
deployer.utils.string_utils.esc2(string)

	Escape double quotes

	
deployer.utils.string_utils.indent(string, prefix=' ')

	Indent every line of this string.

Other

	
deployer.utils.network.parse_ifconfig_output(output, only_active_interfaces=True)

	Parse the output of an ifconfig command.

	Returns:	A list of NetworkInterface objects.

About

Special thanks to

This framework depends on two major libraries: Paramiko and Twisted Matrix.
A small amount of code was also inspired by Fabric.

Authors

	Jonathan Slenders (VikingCo, Mobile Vikings)

	Jan Fabry (VikingCo, Mobile Vikings)

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 deployer	

 	
 	
 deployer.console	

 	
 	
 deployer.exceptions	

 	
 	
 deployer.groups	

 	
 	
 deployer.host_container	

 	
 	
 deployer.inspection	

 	
 	
 deployer.inspection.filters	

 	
 	
 deployer.inspection.inspector	

 	
 	
 deployer.node	

 	
 	
 deployer.pseudo_terminal	

 	
 	
 deployer.utils.network	

 	
 	
 deployer.utils.string_utils	

Index

 A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | N
 | O
 | P
 | Q
 | R
 | S
 | W

A

 	
 	ActionException

 	
 	alias() (in module deployer.node)

C

 	
 	call_action() (deployer.inspection.inspector.NodeIterator method)

 	cd() (deployer.host_container.HostsContainer method)

 	choice() (deployer.console.Console method)

 	
 	confirm() (deployer.console.Console method)

 	Console (class in deployer.console)

 	console (deployer.node.Env attribute)

D

 	
 	deployer.console (module)

 	deployer.exceptions (module)

 	deployer.groups (module)

 	deployer.host_container (module)

 	deployer.inspection (module)

 	deployer.inspection.filters (module)

 	deployer.inspection.inspector (module)

 	
 	deployer.node (module)

 	deployer.pseudo_terminal (module)

 	deployer.utils.network (module)

 	deployer.utils.string_utils (module)

 	DeployerException

 	dont_isolate_yet() (in module deployer.node)

 	DummyPty (class in deployer.pseudo_terminal)

E

 	
 	Env (class in deployer.node)

 	env() (deployer.host_container.HostsContainer method)

 	esc1() (in module deployer.utils.string_utils)

 	
 	esc2() (in module deployer.utils.string_utils)

 	ExecCommandFailed

 	exists() (deployer.host_container.HostContainer method)

 	(deployer.host_container.HostsContainer method)

F

 	
 	Filter (class in deployer.inspection.filters)

 	filter() (deployer.host_container.HostsContainer method)

 	(deployer.inspection.inspector.NodeIterator method)

 	
 	from_definition() (deployer.host_container.HostsContainer class method)

G

 	
 	get() (deployer.host_container.HostContainer method)

 	(deployer.host_container.HostsContainer method)

 	get_action() (deployer.inspection.inspector.Inspector method)

 	get_actions() (deployer.inspection.inspector.Inspector method)

 	get_childnode() (deployer.inspection.inspector.Inspector method)

 	get_childnodes() (deployer.inspection.inspector.Inspector method)

 	get_group() (deployer.inspection.inspector.Inspector method)

 	get_height() (deployer.pseudo_terminal.Pty method)

 	get_name() (deployer.inspection.inspector.Inspector method)

 	
 	get_parent() (deployer.inspection.inspector.Inspector method)

 	get_path() (deployer.inspection.inspector.Inspector method)

 	get_properties() (deployer.inspection.inspector.Inspector method)

 	get_property() (deployer.inspection.inspector.Inspector method)

 	get_queries() (deployer.inspection.inspector.Inspector method)

 	get_query() (deployer.inspection.inspector.Inspector method)

 	get_root() (deployer.inspection.inspector.Inspector method)

 	get_size() (deployer.pseudo_terminal.Pty method)

 	get_width() (deployer.pseudo_terminal.Pty method)

 	Group (class in deployer.groups)

H

 	
 	has_action() (deployer.inspection.inspector.Inspector method)

 	has_childnode() (deployer.inspection.inspector.Inspector method)

 	has_command() (deployer.host_container.HostContainer method)

 	(deployer.host_container.HostsContainer method)

 	has_property() (deployer.inspection.inspector.Inspector method)

 	
 	has_query() (deployer.inspection.inspector.Inspector method)

 	HasAction (class in deployer.inspection.filters)

 	HostContainer (class in deployer.host_container)

 	hosts (deployer.node.Env attribute)

 	HostsContainer (class in deployer.host_container)

I

 	
 	in_columns() (deployer.console.Console method)

 	indent() (in module deployer.utils.string_utils)

 	InGroup (class in deployer.inspection.filters)

 	initialize_node() (deployer.node.Env method)

 	
 	input() (deployer.console.Console method)

 	Inspector (class in deployer.inspection.inspector)

 	is_callable() (deployer.inspection.inspector.Inspector method)

 	IsInstance (class in deployer.inspection.filters)

L

 	
 	lesspipe() (deployer.console.Console method)

N

 	
 	NAME_ONLY (deployer.inspection.inspector.PathType attribute)

 	Node (class in deployer.node)

 	
 	NODE_AND_NAME (deployer.inspection.inspector.PathType attribute)

 	NODE_ONLY (deployer.inspection.inspector.PathType attribute)

 	NodeIterator (class in deployer.inspection.inspector)

O

 	
 	open() (deployer.host_container.HostContainer method)

P

 	
 	parse_ifconfig_output() (in module deployer.utils.network)

 	PathType (class in deployer.inspection.inspector)

 	prefer_isolation() (deployer.inspection.inspector.NodeIterator method)

 	prefix() (deployer.host_container.HostsContainer method)

 	
 	PrivateOnly (in module deployer.inspection.filters)

 	Pty (class in deployer.pseudo_terminal)

 	PublicOnly (in module deployer.inspection.filters)

 	put() (deployer.host_container.HostContainer method)

Q

 	
 	QueryException

R

 	
 	run() (deployer.host_container.HostContainer method)

 	(deployer.host_container.HostsContainer method)

 	
 	run_in_auxiliary_ptys() (deployer.pseudo_terminal.Pty method)

S

 	
 	select() (in module deployer.pseudo_terminal)

 	select_node() (deployer.console.Console method)

 	select_node_isolation() (deployer.console.Console method)

 	set_group() (in module deployer.groups)

 	set_size() (deployer.pseudo_terminal.Pty method)

 	
 	SimpleNode (class in deployer.node)

 	sudo() (deployer.host_container.HostContainer method)

 	(deployer.host_container.HostsContainer method)

 	suppress_action_result() (in module deployer.node)

 	suppress_result_for_action() (deployer.inspection.inspector.Inspector method)

W

 	
 	walk() (deployer.inspection.inspector.Inspector method)

 	
 	warning() (in module deployer.console)

 _static/file.png

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

_static/ajax-loader.gif

_static/down.png

_static/plus.png

nav.xhtml

 Table of Contents

 		Python-deploy-framework

 		Getting started

 		Hello world

 		Creating nodes

 		Starting an interactive shell

 		Remote SSH Hosts

 		The Console object

 		Exceptions

 		The interactive shell

 		Navigation

 		Special commands

 		Implementing a custom shell

 		Groups

 		host_container

 		Reference

 		Inspection

 		Filters for NodeIterator

 		The node object

 		Running the code

 		Inheritance

 		Expansion of double underscores

 		The difference between Node and SimpleNode

 		.Array and .JustOne

 		Using contrib.nodes

 		Reference

 		pseudo_terminal

 		The query object

 		More examples

 		Reference

 		Utils

 		String utilities

 		Other

 		About

 		Special thanks to

 		Authors

_static/up.png

_static/down-pressed.png

